Demographic Estimating Conference

AGENDA

Agenda Item Speaker BEBR BEBR Special Project: Date An Evaluation and Recommendation June 30, 2025 of Racial/Ethnic Categories to Use for **Population Estimates and Projections** Time BEBR 2024 County and Subcounty 1:30 pm Population Estimates Comparison Place of Meeting BEBR and Since last Conference 117 Knott FDR Components of Change Florida Department of Health Census Bureau Estimates State Indicators **Electric Customers** Driver's Licenses Discuss Forecast / Reach Consensus Forecast (2025-2030)

This page was intentionally left blank

An Evaluation and Recommendation of Racial/Ethnic Categories to Use for Population Estimates and Projections

> Stefan Rayer and Conor Comfort Bureau of Economic and Business Research University of Florida

Report Prepared for the Florida Legislature May 2025

1. Introduction

The first census in the United States was held in 1790, and nearly every decade since, the methods of measurement and data collection have varied (Marks & Rios-Vargas, 2021). The decennial census in the United States is based on self-enumeration, allowing respondents to identify according to the demographic characteristics that they believe best describe them. The collection and tabulation of data on race and ethnicity in the 2020 census follow the standards on race and ethnicity set by the U.S. Office of Management and Budget (OMB) in 1997 (OMB, 1997). For race, the OMB standards identify five minimum categories: White; Black or African American; American Indian or Alaska Native; Asian; and Native Hawaiian or Other Pacific Islander. In 2020, the decennial census questionnaire listed the following races that respondents could identify as: White; Black or African American; American Indian or Alaska Native; Chinese, Filipino, Asian Indian, Vietnamese, Korean, Japanese, or Other Asian; and Native Hawaiian, Samoan, Chamorro, or Other Pacific Islander. In addition, respondents could identify as Some Other Race (SOR), for which a write-in of the race or origin was provided on the questionnaire. In many Census Bureau publications and data products, the individual Asian groups are aggregated to Asian, and Native Hawaiian, Samoan, Chamorro, and Other Pacific Islander are aggregated to Native Hawaiian and Pacific Islander. This provides five single race categories, plus Some Other Race. Respondents also had the option to identify as more than one race (e.g., White and Black, or White, Asian, and Some Other Race). This group can be referred to as Two or More Races, TOMR, or Multiracial; these terms are used interchangeably in this report. Many Census Bureau publications show data on race for these seven groups; the Two or More Races category is sometimes broken down further into the individual combinations of the races involved.

With respect to ethnicity, the OMB standards classify individuals in one of two categories: "Hispanic or Latino" or "Not Hispanic or Latino." In 2020, the decennial census questionnaire listed the following Hispanic or Latino origins that respondents could identify as: No, not of Hispanic, Latino, or Spanish origin; Yes, Mexican, Mexican American, Chicano; Yes, Puerto Rican; Yes, Cuban; and Yes, another Hispanic, Latino or Spanish origin. According to the OMB standards, people of Hispanic origin may be of any race. As a result, the data are available for mutually exclusive combinations of race and Hispanic origin.

For the first time, the 2020 census asked respondents who selected White or Black to provide their "origins" (i.e., an implied nationality of origin). If their origins did not match the

selected box or fit into a single race, the response was recoded based on a computer algorithm (Starr and Pao, 2024). Therefore, many respondents who self-identified as one race were reclassified into multiple races. This resulted in unusually high counts of the Multiracial population in the 2020 census and major discrepancies between data on race and Hispanic origin (NASEM, 2023; Arias, et al., 2025). To illustrate, the Two or More Races population increased by 276% for the United States and 652% for Florida from 2010 to 2020. This change in methodology makes it difficult to determine to what extent the increase in the Two or More Races population was due to actual demographic change over the decade rather than a statistical artifact. Research on this topic has shown that the Multiracial population has indeed increased from 2010 to 2020, but the rate of this increase is unclear due to limitations in the data (Ventura and Flores, 2025). Additionally, it is important to acknowledge that the identities of those who self-enumerate are not fixed and can change over time, and it is not uncommon for an individual to change the way they self-identify over the course of their life (Ventura and Flores, 2025; Lam-Hine, et al., 2025). We acknowledge that the racial and ethnic groups in the available data may not align precisely to how individuals self-identify, but we must work within the constraints of the data available.

By far, the largest increase in the Two or More Races population included a combination with Some Other Race. Nationwide, in 2020 about 34% of all Two or More Races responses involved a combination of the five OMB race categories (e.g., Black or African American and Asian), while about 66% involved Some Other Race in combination. This was a significant increase from 2010 when about 70% of all Two or More Races responses involved a combination of the OMB race categories. For the Hispanic population, the Two or More Races group overwhelmingly involved a combination with Some Other Race (close to 95% in 2020, vs. 75% in 2010). The Census Bureau's population estimates do not include Some Other Race, and therefore a modified race dataset had to be created – the 2020 Modified Age & Race Census (MARC) file – which removes the SOR race category. This results in a total of 31 race groups, including the five single-races – White, Black/African American, American Indian/Alaska Native, Asian, and Native Hawaiian/Other Pacific Islander – and all the Multiracial combinations between them (USCB, 2025). The 2020 MARC file provides comparable data to the modified race files from earlier censuses (the 2010 Modified Race Data Summary File, the 2000 Modified Race Data Summary File, and the 1990 Modified Age/Race, Sex, and Hispanic Origin Summary File).

This report will evaluate different racial and ethnic classifications for the population estimates and projections produced by the Bureau of Economic and Business Research (BEBR) at the University of Florida and make recommendations for future use. For many years, BEBR has produced population estimates and projections by race and ethnicity based on the bridged-race classification from the National Center for Health Statistics (NCHS). This series was implemented after the 2000 census, which for the first time offered respondents the option to choose more than one race. Since prior censuses did not allow the option to select more than one race, the Multiracial population in the 2000 census created comparability issues with earlier census data. The NCHS bridged-race estimates were developed to address this need. For the bridged-race estimates, NCHS, in collaboration with the Census Bureau, reallocated the Multiracial population proportionally to the single-race categories, based on data from the 1997–2000 National Health Interview Surveys (NHIS) (NCHS, 2003). Furthermore, like the modified race files from the Census Bureau, the NCHS bridged-race estimates do not include the Some Other Race category. The need for this series continued over the next decade and NCHS produced another series of bridged-race estimates after the 2010 census. The series of postcensal estimates has since been discontinued, concluding with the release of the Vintage 2020 estimates (NCHS, 2022). There will be one final data product - the July 1, 2010 to July 2019 intercensal bridged-race population estimates - but no further releases afterwards by NCHS. Consequently, we need to reevaluate which racial and ethnic categories to use for the BEBR population estimates and projections by age, sex, race, and Hispanic origin going forward, as well as for the intercensal estimates by these demographic characteristics for the past decade. We will focus our analysis primarily on the 2020 MARC file, but we will also look at alternatives such as using the original data from the decennial census and making our own allocations. Additionally, we will consider alternative proposals to how our data products are categorized and released to fit both the capabilities of the available data and the demand for our estimates and projections by race and ethnicity.

2. Data & Analysis

2.1 Modified Age & Race Data

As noted above, a main difference between the MARC file data and the original 2020 census counts relates to the decrease in the Two or More Races population. This is of particular importance, given

the unprecedented growth of the Multiracial population between the 2010 and 2020 censuses. The spike in the Multiracial population was led by SOR in combination with another race, which increased by 733% (Jones, et al., 2021; Arias, et al., 2025). The 2020 MARC file thus resulted in a significant reduction of the population classified as Two or More Races. Given change of such magnitude, it is essential to understand how respondents who selected SOR were reassigned. Census respondents who selected a single race along with SOR were automatically reassigned to the single race they selected. For example, a respondent who self-identified as Asian and SOR got reclassified as Asian only in the MARC file. The same method applies to a respondent who selected two single-race groups along with SOR; for example, a person who identified as Asian, White, and SOR in the census got reclassified as Asian and White in the MARC file (USCB, 2025). This led to a substantial increase in the American Indian and Alaska Native (AIAN) population, which was 2,601,461 persons (69.8%) larger nationwide in the MARC file compared to the original census counts (Table 1). In percentage terms, Native Hawaiian and Other Pacific Islander had the second largest increase at 170,296 persons (24.7%), followed by White which grew by 40,496,233 persons (19.8%). These allocations align with the growth of the specific Multiracial groups in the 2020 census. Excluding SOR, the largest increase occurred for White along with another race, which increased by 316%, while the single race White population decreased by 8.6% (Jones, et al., 2021; Arias, et al., 2025).

Increases in SOR in combination with another race greatly increased the Multiracial Hispanic population in the original 2020 census counts compared to 2010. Since there were not any instructions telling respondents how to "print origins" (Marks & Rios-Vargas, 2021), many respondents who selected SOR wrote-in "Hispanic" or a specific Hispanic origin (such as Ecuadorian or Salvadorian) in that box. Thus, a respondent could select White and SOR and list "Hispanic" as their SOR origin – even when selecting Hispanic as their ethnicity. Consequently, the Hispanic Two or More Races population grew by 567.2% from 2010 to 2020 (Jones, et al., 2021). Respondents listing Hispanic as their SOR origin suggest that the design of the questionnaire would benefit from a combined question on race and ethnicity, which aligns more closely with their selfidentification preferences. This has been acknowledged by many researchers, including those within the Census Bureau (Jones, et al., 2021). In 2024, OMB has issued revisions to the standards for maintaining, collecting, and presenting federal data on race and ethnicity that combine the currently separate questions on Hispanic or Latino ethnicity and race into a single combined race and ethnicity question. This allows respondents to select one or multiple categories and requires the use of this single-question format for both self-response and proxy response (OMB, 2024). The new OMB guidelines also added a seventh category – Middle Eastern or North African (MENA); thus, the new minimum guidelines on race and ethnicity include the following seven categories: American Indian or Alaska Native; Asian; Black or African American; Hispanic or Latino; Middle Eastern or North African; Native Hawaiian or Pacific Islander; and White.

In the 2020 census, 26.5% of the population was Hispanic in Florida and almost half of Florida's Hispanic population (48.4%) was Multiracial. This was a greater proportion than for the nation overall where 32.7% of the Hispanic population self-identified as Two or More Races. With a greater portion of the Hispanic population belonging to Two or More Races, in the MARC file, Multiracial Hispanic had the largest numerical reduction of all racial and ethnic groups in Florida, falling from 2,759,929 to 195,536 persons (-92.9%). The Multiracial Non-Hispanic population also had a significant decrease of 225,890 persons or -28.5%. In the MARC file, all the OMB single race groups were larger in Florida than in the original census counts, regardless of Hispanic origin, due to the reallocations from the Some Other Race and the Two or More Races groups. The largest percentage increases were for American Indian/Alaska Native and Native Hawaiian and Other Pacific Islander, which grew by 58.7% and 53.4%, respectively. This was followed by White (32.1%), Black or African American (8.4%), and Asian (5.0%) (Table 2). However, it is important to note that these changes are due to modifications to the data, rather than reflect actual increases in population. Tables 3 and 4 show a comparison between the original 2010 census counts and the 2010 census modified race summary file (MRSF) data for the United States and Florida. As in 2020, the Multiracial population in the modified race data was much reduced while all the OMB single race groups increased in size.

While the most significant changes made in the 2020 MARC file were with respect to race, the Census Bureau also made changes to age. Age heaping, which refers to the tendency of respondents to report age as ending in the numbers 0 or 5, was a significant problem in the 2020 census. Age heaping is caused by age responses being provided by an indirect source – such as a family member, friend, or neighbor – who made an approximation of a person's age. The 2020 census saw greater levels of age heaping than in past censuses, and therefore, the MARC file smoothed the age values using a Gaussian-based kernel (USCB, 2025). This resulted in a Whipple's Index of 100.9 compared to 203.0 in the census; a score of 100.0 would indicate no age heaping is present. As age heaping would suggest, the most impactful changes in the MARC file were to ages

ending in the numbers 0 or 5. The changes are more pronounced for the adult population, ages 18 and above, since age data for those under age 18 are likely provided by a parent or legal guardian who is knowledgeable of their child's exact age. For the larger five-year age groups, the differences to the age structure were relatively minor. Figures 1 and 2 display these differences by single year of age and five-year age groups, respectively.

In Florida, the most pronounced differences were at the college-age population, specifically between ages 18 and 24. The population ages 18 to 19 saw an increase of 3,181 persons, while ages 20 to 21 decreased by 5,427 persons, and ages 22 to 24 increased by 4,960 persons. Alachua and Leon Counties, home to large student populations, saw the biggest changes at these ages. Alachua County saw a decrease of 965 persons ages 20 and 21, while the same age group declined by 1,003 in Leon County. The population ages 18 to 19 and 22 to 24 increased by a total of 396 persons in Alachua and by 435 persons in Leon (data not shown). Other changes to the age structure were minor.

Lastly, it should be noted that total population, for both the state and counties, was slightly different in the MARC file than in the 2020 census counts. This was not the case in 2010; here, the modified race data had identical total population counts to those in the decennial census. The differences in 2020 are due to the introduction of a new privacy protection protocol – differential privacy – which adds statistical noise to unrestricted data (USCB, 2025). However, at the state level, these changes are insignificant, reflecting a decrease of 22 persons for Florida. Importantly, regarding differential privacy, the Census Bureau stated that the single year of age data are more accurate in the MARC file than the DHC file that includes the 2020 census counts (USCB, 2025).

2.2 NCHS Bridged-Race Population Estimates

Because the NCHS bridged-race estimates are being discontinued, we must look for alternative data sources for our county estimate and projection models by age, sex, race, and Hispanic origin. For this report, we investigated the option to recreate a similar dataset using the allocation method used by NCHS in the past but with some custom modifications. NCHS allocated the Two or More Races population using a regression method with data from the 1997–2000 National Health Interview Surveys (NHIS). This assigns a single race to "the preferred race of multiple-race respondents" (NCHS, 2003). For example, if the probabilities of the White and Asian Multiracial

group were 0.6 and 0.4, respectively, then Census respondents who selected both White and Asian would be allocated 60% to White and 40% to Asian. Additionally, probabilities were defined by sex, single year of age, Hispanic origin, and county. The NCHS did not release these probabilities by the above characteristics; however, they provided the responses from the NHIS that were used to allocate the Multiracial population to a single race. These responses give broad insight into how the Two or More Races population is likely to identify – without regard to age, sex, Hispanic origin, or geography. For example, 62.7% of the Black or African American and White group identified Black or African American as their primary race, compared to 37.3% who identified as White. The Asian or Pacific Islander and White group had 50.8% distributed to Asian or Pacific Islander and 49.2% to White (NCHS, 2003). It should also be noted that survey respondents had the option to select "no primary race;" these respondents were excluded from the single-race allocation probabilities.

Considering this, BEBR has produced a set of population estimates for 2010 and 2020 based on a custom allocation of the Two or More Races population. Other state demography programs have implemented a similar approach to their population projections (see e.g., Arizona Office of Economic Opportunity, 2022). The custom allocation series offers the opportunity to continue using the same data inputs for 2010 and 2020 that are currently in the BEBR model but also provides the option to implement different racial categories, if desired. For the Non-Hispanic population, the custom allocation takes each Multiracial group and assigns a proportion to each single race selected by the respondent. It should be noted that the NCHS bridged race estimates include a combined Asian or Pacific Islander racial group (NCHS, 2003). Because the American Indian/Alaska Native population (AIAN) is relatively small in Florida – and therefore, the data available are insufficient to make accurate allocations – the AIAN population was included in the Asian racial group. Thus, BEBR allocated the Two or More Races population to White, Black/African American, or Asian (including Native Hawaiian/Other Pacific Islander and American Indian/Alaska Native).

In 2010, the NCHS bridged-race estimates allocated 180,449 of the 339,476 (53.2%) Non-Hispanic Multiracial and SOR respondents to White in Florida, leading to a one percent increase of the White population compared to the 2010 census counts; 98,992 (29.2%) were allocated to Black or African American, while 60,035 were allocated to Asian (17.7%) (Table 5). BEBR allocated fewer Non-Hispanic Multiracial and SOR respondents to White (144,265 or 42.5%) but more to Asian than the NCHS (93,765 or 27.6%). The proportion allocated to Black was similar between the two sets, with a difference of only 2,454 persons. The same method was applied to the 2020 census population. Since the MARC file includes the Two or More Races group, the single-race groups were larger in the BEBR custom allocation. The Asian population was 1.2% larger, followed by Black or African American (1.0%), and White (0.8%). Compared to the 2020 census counts, the combined Asian group (including AIAN and NHPI) had a 1.3% increase in its share of total population in the BEBR custom allocation, versus 0.1% in the MARC file – an increase of 240,834 persons. Additionally, the White population was 441,008 persons larger (2.3%) compared to the 2020 census, while the Black/African American population increased by 248,234 persons or 1.3% (Table 6). We will discuss the suitability of using our custom allocation further in the section on cohort change ratios below (section 2.5).

2.3 Population Estimates and Projections by Race and Ethnicity Produced by Other States

Through a joint effort with the United States Census Bureau, state governors appoint an agency to represent their state as a member of the Federal-State Cooperative for Population Projections (FSCPP) (USCB, 2021). Each state has a FSCPP representative; their roles include reviewing Census data products and producing population projections for their local areas. The activity levels of the FSCPP members vary widely, with some states producing population projections annually and others only occasionally. The level of geographic detail of those projections also varies; some FSCPP representatives produce only state-level projections while others create them for counties and/or smaller geographic areas. The included demographic characteristics, such as age, sex, race, and ethnicity, vary as well. Some include projections of total population only, while others include complex sets by these characteristics. Only a handful of states, including Florida, produce population projections with detailed race and ethnicity characteristics on a regular basis. Table 7 shows a summary of seven states with active population projection programs, including the racial and ethnic groups used by each state.

In terms of race and ethnicity, most states produce projections using a combination of mutually exclusive groups such as Non-Hispanic White, Non-Hispanic Black, Non-Hispanic Other, and Hispanic (including all races). Out of the seven states shown in Table 7, only North Carolina produces projections for Hispanics by race, which includes two groups: Hispanic White and Hispanic Nonwhite. Our current models provide projections by county for Non-Hispanic White, Non-Hispanic Black, and Hispanic. We also release data for additional racial/ethnic groups, which accompany the main publication. These groups include White, Black, and Nonwhite (without reference to ethnicity). Although we do not provide data directly for the Hispanic White, Hispanic Black, and Hispanic Nonwhite populations, they can be derived for these groups by calculating them as the residual of their total population and Non-Hispanic counterparts. It should also be noted that while our main data products provide projections for the Non-Hispanic White, Non-Hispanic Black, and Hispanic populations, our projection models are initially run for the following three groups, which add up to total population: Non-Hispanic White, Non-Hispanic Nonwhite, and Hispanic. We derive the Non-Hispanic Black population at a later stage by applying proportions from the prior census to the Non-Hispanic Nonwhite population.

2.4 Institutional Data

Institutional populations account for a sizable portion of total population in many Florida counties, especially those with total populations below 50,000. Of the 26 Florida counties with a total population below 50,000 in 2020, 10 counties had institutional populations – defined here as inmates in state and federal prisons - exceeding 10% of total population, and another 12 counties had institutional populations that were between 5% and 10% of total population. College students - which can be part of the institutional population, depending on their housing situation - are another population that warrants special attention. Due to differences in demographic characteristics and growth patterns to the general population in households, it is important to treat the prison and student populations separately in counties where they account for a sizeable proportion of total population. Accordingly, in the BEBR projections, the institutional and noninstitutional populations are projected separately in about half of all counties (Rayer and Comfort, 2024). In three counties (Alachua, Leon, and Volusia), we make separate projections for the college student population. In Alachua and Leon counties, the student population exceeds 15% of the total population. In Volusia County, while the overall college population is not that sizeable with respect to the county's total population, the student population at Bethune-Cookman University, a Historically Black College or University (HBCU), accounts for about 4% of the county's Black population, and we currently project it separately as well. While the college population in these three counties is not strictly institutional in nature, it is a special population that requires a separate treatment due to its unique age structure and is therefore included in our discussion in this section. All other institutional populations that are accounted for in the BEBR projections relate to inmates

in state and federal prisons. We make separate institutional projections in the following 30 counties that have sizeable inmate populations: Baker, Bradford, Calhoun, Columbia, DeSoto, Dixie, Franklin, Gadsden, Gilchrist, Glades, Gulf, Hamilton, Hardee, Hendry, Holmes, Indian River, Jackson, Jefferson, Lafayette, Liberty, Madison, Okeechobee, Santa Rosa, Sumter, Suwannee, Taylor, Union, Wakulla, Walton, and Washington counties. We note that the state prisons in Hendry and Indian River counties closed in 2012, but we still need to account for them because these facilities were open and housed inmates during the base period for our projections.

Unlike data on the population in households, we receive institutional data directly from local and federal sources. These include college enrollment figures by demographic characteristics from the various universities and data provided by the Florida Department of Corrections and the Federal Bureau of Prisons. It should be noted that the Florida Department of Corrections has provided us with data on the race and ethnicity of each individual inmate for 2010 and 2020; however, these data did not match the OMB race standards set forth in 1997 (OMB, 1997). Instead, we allocate the race and ethnicity of the inmate populations based on census data. Accordingly, the 2020 data on the institutional population are essential to determining which racial and ethnic categories we will implement into our population estimates and projections.

The 2020 MARC file includes modified age and race data on the resident population, the household population, and the group quarters population. These data are available for all racial and ethnic groups in the MARC file. Institutional data on race and ethnicity from the 2020 census are available in the DHC file but with limited characteristics by race and age. In addition to total population, data by race are available for White; Black or African American; American Indian and Alaska Native; Asian; Native Hawaiian and Other Pacific Islander; SOR; and Two or More Races. There are also data for Non-Hispanic White and for Hispanic, but not for any other racial or ethnic groups. Thus, data for the Non-Hispanic Asian or for Hispanics by race. In the MARC file, we allocated the Non-Hispanic groups other than White to Non-Hispanic Nonwhite to make the institutional populations directly comparable to the DHC file. Table 8 shows a comparison between the two files for the 28 counties where the institutional populations are currently projected separately, excluding the three counties where we account for college students (Alachua, Leon, and Volusia). As exhibited, the differences between the two are quite small.

While the differences in the race and Hispanic groups are small between the two files, it is also important to consider the differences in age structure of the institutional population since this is a crucial element in constructing county projections. We analyzed race and sex cohorts by age group, accordingly. The largest differences were in counties with larger populations, and therefore, differences between the MARC and DHC files were largely proportionate to county size. The population ages 18 to 24 for Non-Hispanic White and Non-Hispanic Nonwhite showed the greatest variance between counties; however, these differences were still mostly minor. The Hispanic institutional populations across all age groups were also similar between the two files (data not shown). Table 9 displays these differences for ages 18 and above for 12 counties with sizeable institutional populations relative to their overall population size. Again, differences in the age structure were minor.

Although the differences in the overall group quarters population are small, there are further issues to consider since BEBR projects the institutional population for state and federal inmates by demographic characteristics. The MARC file does not provide data on specific group quarter types but solely for the group quarters population in its entirety. Census 2020 data are available by group quarter type in the DHC file, but only cover three broad age groups: under 18 years, 18 to 64 years, and 65 years and above. Moreover, these data include race and ethnicity classifications solely for Non-Hispanic White and Hispanic, which allows for the remaining population to be allocated to Non-Hispanic Nonwhite. The DHC file does provide group quarters data by type for five-year age groups, but only for total population, not by race and ethnicity. Furthermore, these data are only available for broadly defined group quarter types, such as correctional facilities, which include not only state and federal prison inmates, but also inmates in local jails and other municipal confinement facilities, correctional residential facilities, and military disciplinary barracks and jails. Table 10 displays data by race and ethnicity for the institutional population in correctional facilities that are available for the three racial/ethnic groups for the three broad age groups. Also shown are data for five-year age groups, which are available only for total population (DHC Tables PCO3, PCT18, PCT18I, PCY18H). This lack of data availability of the institutional population by demographic characteristics presents a problem for our county model, which currently requires data for the three racial and ethnic categories shown by five-year age groups. Table 11 shows a further breakdown into correctional facility type but does not include any information on race or ethnicity since such data are unavailable. The greatest level of detail on state and federal prison

inmates is available for total population, excluding race and ethnicity, and only for ages 0–17, 18– 64, and 65 and above (DHC Table PCT19). Lastly, it should be noted that the female inmate population is excluded from Tables 9–11, since the institutional population in the respective counties is male only.

Our current county projection model requires data inputs for the state and federal prison inmate population by 5-year age group and by race and ethnicity; neither the MARC nor DHC file include data at this level of detail. Accordingly, we need to apply custom modifications to the existing data, which will be dependent on the specific racial and ethnic groups that will be chosen for the projections. In most counties with correctional facilities, the inmate population in state prisons makes up a very large proportion of the overall inmate population (Table 12). Five counties in Florida also have federal prison populations (Escambia, Jackson, Leon, Miami-Dade, and Sumter); of these, we only account for them in Jackson and Sumter counties, since they represent a sizeable portion of their county's total population. Sumter County has the largest federal inmate population of any county in Florida. The county also has a considerable population ages 18 to 64 in the county, while federal prison inmates account for 77.8% (Table 12). Among counties where we take out the institutional population, Jackson County is the only other county that has a federal prison population, but the inmate population was significantly reduced at the time of the 2020 decennial census due to storm damages from Hurricane Michael.

If we incorporate data from the MARC file into our projections model, assumptions could be made on the group quarters population based on the available correctional facilities and group quarters data from the DHC file. To reconcile these data, and to derive the needed institutional cohorts used in our county model, significant manipulation of the data in the MARC file will be necessary. Table 13 shows the MARC group quarters population compared to the current institutional takeout (the institutional population that is removed from each county) in the BEBR model for 2020. The differences come from the additional group quarter types that are included in the MARC file but not in the BEBR institutional takeouts; in addition, there can be discrepancies between the institutional prison inmate populations as counted in the 2020 census and those reported to us by the Florida Department of Corrections and the Federal Bureau of Prisons. Only Union County has a comparable population, with a difference of 18 persons, since all their group quarters population comes from correctional facilities, and nearly all (98%) of their correctional

facilities population comes from state prisons (Tables 12 and 13). However, differences for Non-Hispanic White and Non-Hispanic Nonwhite are more substantial, considering the BEBR model currently uses 2020 census data which the MARC file was employed to modify. Nonetheless, by proportionately removing the group quarters population that does not come from correctional facilities from the total group quarters population in the MARC file, a significant portion of that difference can be reduced, and, to a greater extent, an even more accurate comparison is reached when removing the correctional facilities population that does not belong to either a state or federal prison. For example, in Dixie County, 99.7% of the group quarters population comes from correctional facilities, and 93.9% of the correctional facilities population comes from state prisons. Applying that proportion to the difference between the BEBR institutional and MARC group quarter total population leaves a remainder of 86 persons (data not shown) – comparable with the remaining population in correctional facilities shown in Table 11.

While there are complications to using the group quarters data in the MARC file, incorporating custom modifications based on the DHC file would also require significant alterations, since the age, race, and ethnicity categories are not comparable to what is currently in the BEBR model. The choice of which data source to use comes down to which racial and ethnic groups will be implemented for the non-institutional projections. The MARC file provides the flexibility of including additional racial groups into the projections, while using census data from the DHC file would accompany custom allocations of the Two or More Races and SOR groups. An additional complication relates to the fact that the modified race data in the 2020 MARC file include data on the institutional population, while earlier modified race data from 2000 and 2010 do not. Thus, if we were to use the institutional populations from the 2020 MARC file, we would still need to develop comparable data for 2010. Taking these factors into account, the next section of this report will evaluate methods to project racial and ethnic categories for the non-institutional population.

2.5 Cohort Change Ratios

The BEBR county estimate and projection model by age, sex, race, and Hispanic origin starts by estimating the total population for Non-Hispanic Whites, Non-Hispanic Nonwhites, and Hispanics using an average of various techniques, including extrapolations of previous population trends and data on births, deaths, and school enrollment. The distributions by race and ethnicity for the county projections are then derived using averages of various extrapolation techniques. These techniques

include linear and exponential extrapolation, the share method, the shift-share method, and the constant method. An average of these techniques is selected as the default for the final projection by race and ethnicity for each county, which is controlled to the county's projected total population. For a few counties, we may select a custom technique where the default technique does not appear to provide reasonable projections; however, in our most recent projections, we used the default in all 67 counties. For more on these various techniques see our county projections methodology (Rayer and Comfort, 2024).

After the county totals by race and ethnicity are determined, the Hamilton-Perry projection method is employed to calculate cohorts by age and sex for the three racial and ethnic groups. This method applies cohort survival ratios (also referred to as cohort change ratios) and child-woman ratios to measure population change in cohorts between decades or 5-year periods (Smith, Tayman, and Swanson, 2013). In our current model, the cohort survival ratios and child-woman ratios are specific to sex, race, and ethnicity. To calculate these ratios, the population of each age group at the end of the base period is divided by the population at the beginning of the base period that is younger in age by the same number of years as the length of the base period. For example, when calculating cohort change ratios between 2000 and 2010, one would divide the population ages 30 to 34 in 2010 by the population ages 20 to 24 in 2000. If the number of persons ages 30 to 34 in 2010 was the same as the number of persons ages 20 to 24 in 2000, the cohort change ratio would equal 1. If the population at those ages increased in size over the period, the cohort change ratio will be greater than 1; conversely, age groups that decreased in size will have cohort change ratios below 1. The cohort change ratios thus measure the survival of the same population age group over a particular time period, as well as migration. In this method, the youngest age group that can be projected is ages 10 to 14 (when 10 years of base data are used) or ages 5 to 9 (when 5 years of base data are used). Child-woman ratios are then applied to obtain the population younger than age 10 (for 10-year base periods) or age 5 (for 5-year base periods). These are calculated as the ratio between women ages 15 to 44 and children ages 0 to 4 (for 5-year base periods), or women ages 15 to 44 and children ages 0 to 4 plus women ages 20 to 49 and children ages 5 to 9 (for 10year base periods). The child-woman ratios are typically calculated using the data that is closest to the launch year of the projections (e.g. data from 2010 rather than 2000). It should be noted that in our current county model we use five-year ratios rather than ten-year ratios, employing our intercensal estimates as a base for 2005. Additionally, we make various adjustments to the cohort

survival and child-woman ratios, as needed. The Hamilton-Perry model, while conceptually simple, has been found to be quite accurate, especially for smaller areas where other more complex models are difficult to implement, or the required input data are unavailable or unreliable (Smith, Tayman, and Swanson, 2013).

The current BEBR county projection model by age, sex, race, and Hispanic origin uses cohort survival ratios averaged over the periods 2000–2005 and 2005–2010. These were derived from the 2000 and 2010 NCHS bridged-race estimates and the BEBR intercensal population estimates and were calculated for Non-Hispanic Whites, Non-Hispanic Nonwhites, and Hispanics. As mentioned above, the NCHS bridged-race estimates have been discontinued and will not be available for the current decade. As a potential substitute, we calculated cohort survival ratios by race and ethnicity for each Florida county using the 2020 MARC and DHC files. We also calculated cohort survival ratios using custom allocations for 2020 to align with the NCHS 2010 data, thus giving us the option to proceed with a custom set of data that follow the NCHS classification, if desired. The method for the 2020 custom allocation was described above in section 2.2.

Since cohort survival ratios measure the change in a population over time, smaller populations can result in very high ratios. For example, in St. John's County, the number of Hispanic males who were Two or More Races and ages 50 to 54 in 2010, and ages 60 to 64 in 2020, increased from 1 person in 2010 to 24 persons in the 2020 MARC file – a ratio of 24. Applying such an extreme cohort change ratio to derive population projections would lead to very questionable age distributions, especially for the medium- to long-term projections. Small populations can also produce very low cohort change ratios, with the resulting projections going to zero after a few years if not modified. Therefore, to assess the robustness of the cohort change ratios for each racial and ethnic group, we calculated the percentage of each group's ratios that fall within three range bands (between 0.80 and 1.25, between 0.67 and 1.50, and between 0.50 and 2.00) of a cohort change ratio of 1.00 in the MARC, DHC, and NCHS data (Table 14). These range bands measure the proportion of cohort change ratios that increased or decreased by one quarter, by one half, or doubled or halved over the decade, respectively. We limited this part of the analysis to cohort change ratios for ages 0-4 to ages 55-59 in 2010, which were compared to ages 10-14 to ages 65-69 in 2020. The population at older ages was excluded from this calculation due to mortality becoming an important cause of changes in ratios at these ages.

Florida's population grew by 14.6% between 2010 and 2020; the populations of some racial and ethnic groups grew slower over that period while others grew faster. Accordingly, we would expect cohort change ratios to differ by race and ethnicity. Rapid growth or decline over the base period can lead to inaccurate projections, especially for the medium- to long-term, and very high or low cohort change ratios typically require adjustments. Cohort change ratios thus depend both on the population size and the growth rate of a particular group in a county. Non-Hispanic Whites represent the largest group in most Florida counties, and this group has generally grown quite slowly over the past decade. We would therefore expect a high proportion of the cohort change ratios for this group to fall in the narrowest range between 0.80 and 1.25; these would require few adjustments. While individual cohorts may fluctuate outside of that range due to true numerical changes in population, the larger racial and ethnic groups likely have most of their cohort change ratios falling between 0.67 and 1.50; these would also require few adjustments. In contrast, racial and ethnic groups with smaller populations, especially those that are fast growing, such as Non-Hispanic Asian and the Two or More Races group, will have higher percentages of ratios falling outside these range bands. In smaller counties, many of which have experienced population declines between 2010 and 2020, there will also be quite a few instances where the cohort change ratios are very small or even go to zero. Thus, the proportion of cohort change ratios that more than doubled (more common) or decreased by more than half (less common) will be quite high in many cases, indicating a high probability that adjustments are needed.

As can be seen in Table 14, Non-Hispanic Whites had the largest percentage of ratios falling within the range between 0.80 and 1.25 in the MARC, DHC, and NCHS data. In all three data sets, more than four out of five ratios for this group fell within the narrowest range band, and very few more than doubled or halved over the decade. Conversely, groups that have smaller populations in many counties in Florida, such as Non-Hispanic Native Hawaiian and Other Pacific Islander or Hispanic Asian, mostly had cohort change ratios that fell outside the three range bands. Irrespective of ethnicity, the cohort change ratios for White, Black/African American, and Asian were closer to 1 than for the other race groups. Hispanic racial groups other than White often had very high cohort change ratios. Interestingly, in the DHC data, the proportions for Hispanic Whites that fell within the three range bands were substantially lower than in the MARC and NCHS data. This is due to the preponderance of Hispanic respondents to select Some Other Race or Two or More Races involving a combination with SOR in Census 2020 (see Table 2). The majority of those

get allocated to Hispanic White in the MARC and NCHS data, which results in cohort change ratios closer to 1. Additionally, it should be noted that the Two or More Races population exhibits greater proportions within the three range bands in the MARC data compared to the DHC data. This seems somewhat counterintuitive, since the DHC data have much larger counts for the Two or More Races population than the MARC data. However, the cohort change ratios are influenced both by population size and growth over time, and the very high growth rates for the Two or More Races population from 2010 to 2020 outweigh the larger population sizes in 2020. Additionally, the increase in those identifying as Two or More Races in Census 2020 also led to spikes in the growth rates – and thus, the cohort change ratios. We believe that this large increase over the decade limits the usefulness of the DHC data, and that there would be few advantages to incorporating these data into our model. Since the MARC file also addresses the issue of age heaping, we do not consider the DHC data for the remainder of our analysis; we focus solely on the MARC data together with our custom NCHS allocation.

Tables 15a, 15b, 15c, and 15d show four options for racial and ethnic categories that could be included in our population estimates and projections. The first option (Table 15a) is most similar to our current model. It provides separate data for Non-Hispanic White, Non-Hispanic Black, White, Black, Nonwhite, and for Hispanic. As stated above, our current model is run for Non-Hispanic White, Non-Hispanic Nonwhite, and Hispanic only – summing up to total population. Projections for the remaining groups for which we publish data – Non-Hispanic Black, and White, Black, and Nonwhite without reference to ethnicity – are derived by applying proportions from the previous census. Going forward, we plan to produce projections for each group for which we publish data individually, which then sum up to total population. Table 15a shows the six racial/ethnic groups for which we could run the model. Unfortunately, the proportions of cohort change ratios for Hispanic Black – and especially Hispanic Asian/AIAN/NHPI/TOMR – that fell within the three range bands were much lower than for the other groups, indicating that extensive adjustments will likely be necessary. While to some extent these reflect actual higher population growth, we suspect that smaller population numbers combined with methodology changes that led to arguably inflated growth rates account for most of the high cohort change ratios for these groups. As discussed above, the Hispanic data by race have large proportions imputed in the MARC file, which reduces their accuracy. This is one of the reasons why the Census Bureau is planning to combine the decennial census questions on race and ethnicity, which would likely substantially reduce the

number of respondents who select Some Other Race. Accordingly, we present three additional options that combine race and ethnicity, with projections for Hispanic regardless of race.

For Tables 15b, 15c, and 15d, we did not consider the custom NCHS allocations further. The NCHS data combine the Asian and Native Hawaiian and Other Pacific Islander populations into one group, which presents limitations in how to categorize the remaining racial groups. Thus, Options 2, 3, and 4 (Tables 15b, 15c, and 15d) are based on the MARC data only. Option 2 proposes separate projections for Non-Hispanic Asian as an individual group; Option 3 includes a combined group for Non-Hispanic Asian, American Indian or Alaska Native, and Native Hawaiian or Pacific Islander, but provides separate projections for the Non-Hispanic Two or More Races population; Option 4 is the most detailed, providing separate projections for both the Non-Hispanic Asian and the Non-Hispanic Two or More Races populations. The differences in the proportion of cohort change ratios that fell within the three range bands were fairly small between Options 2, 3, and 4. As previously stated, groups with smaller populations are more likely to have more outliers in their cohort survival ratios. Accordingly, the Non-Hispanic Two or More Races group by itself (Tables 15c and 15d) had slightly lower proportions within the three range bands than when combined with Asian, AIAN, and NHPI (Table 15a) or when combined with AIAN and NHPI (Table 15b). Similarly, Non-Hispanic Asian alone (Table 15b) had somewhat lower proportions than when combined with AIAN and NHPI (Table 15c) but had similar proportions to the combined Non-Hispanic AIAN/NHPI group (Table 15d). Still, all these proportions were much higher than for Hispanic Other (Table 15a), which would be a required racial and ethnic category if we proceed with Option 1.

2.6 Estimates vs. Projections

With the new modified age and race census data now available, and with the discontinuation of the NCHS bridged-race estimates, it is an ideal time to consider methodological changes to the BEBR estimate and projection models by demographic characteristics. In the previous section we discussed and proposed four options for developing the racial and ethnic distributions by age and sex of the BEBR population estimates and projections. The first option essentially builds upon our current model but changes the way the estimates and projections are produced. It provides the same racial and ethnic categories we currently publish data for, but we would calculate the estimates and projections separately for each racial and ethnic group rather than apply proportions for some of the groups. The second, third, and fourth options represent a change from our current

approach in that they combine race and ethnicity, which is in line with the Census Bureau's plans going forward. All four options, however, are similar in that they apply the same methodology to both the estimates and the projections. We believe there is a better approach and conclude the analysis by proposing a fifth option which differentiates between the population estimates and the projections.

All four options discussed in the previous sections share a similar constraint: the cohort change ratios for all but the largest racial and ethnic groups involve many extreme values that would be problematic for the projections and require adjustments. A further complication relates to the institutional population, which in many of the smaller counties constitutes a sizeable proportion of total population, and for which we do not have the required data by race and ethnicity. The adjustments to the cohort change ratios we made in our current model focused on the population projections. They were implemented to provide "reasonable" projections, especially for the medium- and long-term, because very high or low cohort change ratios can result in uneven age structures when applied repeatedly over the projection horizon (i.e., if left unchanged, a particular age group can increase rapidly over time or go to zero while the age group above or below may change in a different direction). This implies that there can be a trade-off between what is advisable for the long-term projections and what might work best for the estimates. High growth rates can be appropriate in the short-term but are unlikely to stay that high over several decades. For example, in an evaluation of the population estimates by age, sex, race, and Hispanic origin for April 1, 2020, we found relatively large errors for several age groups in Sumter County (Rayer, 2023). These were caused by the adjustments we made to the cohort change ratios: the original ratios were very high due to the strong population growth at the retirement ages that occurred between 2000 and 2010. We assumed that such high growth rates are unlikely to continue for the coming decades and adjusted the cohort change ratios downward. This may still turn out to be appropriate for the projected populations in 2030 and beyond, but it resulted in lower accuracy for the age estimates for 2020. While Sumter County is a unique case, there are many other counties where we adjusted the cohort change rates. Crucially, the key consideration for the adjustments was always the potential impact on the projections, especially for the long-term, rather than on the estimates. The population estimates by age, sex, race, and Hispanic origin are produced after all the projections are completed. This is done through interpolation between the launch year and the first projection

year (e.g., 2023, interpolated between 2020 and 2025). There are typically no adjustments made to the estimates at this stage, i.e., they are determined through interpolation only.

A problem with the current approach – and by extension with the proposed four options discussed above - is that we spend a lot of time and effort producing a product for which there is relatively little demand, yet in doing so we may limit the accuracy and usefulness of a product for which there is much more demand. Judging from the requests, questions, and comments we get about our various data products, as well as looking at the data downloads on our webpage, we know that there is great demand for the BEBR population estimates for Florida counties and local municipalities, as well as for our county projections of total population. The low and high series of the county projections are also popular, even though these alternative series are frequently used in ways they were not intended for. There is less demand for our estimates and projections by age, sex, race, and ethnicity, and when we do get requests or inquiries, they mostly concern the estimates rather than the projections. That is, there is great demand for detailed demographic characteristics for the current population, while the interest for future populations is primarily with regards to more aggregate growth patterns as well as different growth scenarios. We argue that perhaps a more useful approach would provide for additional racial and/or ethnic categories by age and sex for the estimates, while the projections would include less demographic detail but would be provided for more racial and/or ethnic groups in the aggregate.

Our fifth option (Table 16) envisions three separate data products for the estimates and projections. First, detailed population estimates by five-year age groups, sex, race, and ethnicity for seven groups (White, Black, AIAN, Asian, NHPI, Multiracial, and Hispanic). Second, population projections of total population for these seven groups. Third, population projections by age and sex for total population, not by race and ethnicity. For the first data product, the population estimates by demographic characteristics, we propose using the Census Bureau's population estimates as a critical input, which would be controlled to our population estimates of total population. We believe that this would combine the strengths of each input data set and has the potential to provide population estimates by demographic characteristics with more detail and greater accuracy. The Census Bureau has access to a wide range of information on age, sex, race, and ethnicity, such as tax return data from the IRS, Medicare enrollment data from the Centers for Medicare and Medicaid Services, and the Social Security Administration's Numerical Identification File. Because of this, the Census Bureau has an inherent advantage in producing population

estimates by these demographic characteristics. Applying the demographic characteristics from the Census Bureau's estimates series would allow us to provide population estimates for several additional racial and ethnic groups which would not be feasible for us to calculate independently. Furthermore, these estimates would then be controlled to our county population estimates of total population, which have proven to be more accurate in the past.

For the second data product, we would provide population projections for the total population for the same seven racial/ethnic groups: White, Black, AIAN, Asian, NHPI, Multiracial, and Hispanic. These would be produced using a similar methodology as we currently employ to derive population totals for Non-Hispanic White, Non-Hispanic Nonwhite, and Hispanic, which involve trend extrapolations and a variety of symptomatic data including births, deaths, and school enrollment. For the third data product, we would provide population projections by age and sex for total population only. The publication would include projections for 5-year age groups by sex for years ending in zero and five, plus projected population totals for the seven racial and ethnic groups for these years. If desired, we could also provide an additional detailed data release that would include projections by single year of age and sex for total population for all the projection years. We analyzed cohort change ratios by five-year age groups and by single year of age for total population and found that the proportions falling into the three range bands were quite similar (Table 17). It should be noted that we used the 2010 DHC and 2020 MARC files to calculate the single year of age ratios, because the MARC file resolves the issue of age heaping present in the census counts but is unavailable by single year of age for 2010.

3. Discussion

This report has analyzed different options for racial and ethnic categories that can be included in BEBR's estimates and projections. We examined the role of institutional data, changes in cohort survival ratios, and various other population and demographic trends. Ultimately, the choice of which racial and ethnic groups to select cannot be determined solely by the anticipated accuracy of the cohort survival ratios and the number of adjustments that are needed to produce "reasonable" projections. Other factors such as demand for estimates and projections for certain groups, their self-identification preferences, and the future of a combined race and ethnicity question must all be considered. The potential limitations of the data must be weighed against the demand to make estimates and projections for certain groups. Policymakers, urban planners,

public health workers, and many others use BEBR's estimates and projections to meet their various needs, and preferences regarding the demographic characteristics included in the estimates and projections vary widely. We currently provide racial and ethnic data for Non-Hispanic White, Non-Hispanic Black, Hispanic, as well as for White, Black, and Nonwhite without reference to Hispanic origin by five-year age groups for males and females; from these, data for Hispanic White, Hispanic Black, and Hispanic Nonwhite can be calculated residually. In our current model, projections for the Non-Hispanic Black and the total Black population are made using proportions out of Non-Hispanic Nonwhite and total Nonwhite, respectively. While these have proven to be reasonably accurate, it would be preferable to produce projections directly for each group for which data are published, rather than applying proportions from a previous census. Furthermore, we believe it may be feasible to produce projections for racial groups other than White or Black, such as for Asian alone or in combination with AIAN and NHPI, as well as the Two or More Races group. However, such detailed projections for additional race groups would only be possible if limited to the Non-Hispanic population, because the Hispanic populations of these racial groups are too small to provide county-level population projections of sufficient accuracy. More importantly, the preponderance of Hispanic respondents to select Some Other Race in the census questionnaire, and the consequently very high imputation rates of the data on race for the Hispanic population in the MARC file, arguably limit the usefulness of these data. Furthermore, the 2024 OMB guidelines to use a combined question on race and ethnicity for maintaining, collecting, and presenting federal data on race and ethnicity strongly suggest treating the Hispanic population as a unique group alongside the other OMB racial and ethnic groups.

Many state demography programs that publish population projections by race and ethnicity (section 2.3) already use a combined race and ethnicity classification, which seems to be preferred by demographers and the public (based on self-identifications in the census). Consequently, we also propose using a combined race and ethnicity classification with one Hispanic group regardless of race – as shown in Options 2, 3, 4, and 5 (Table 15b, 15c, 15d, and 17). That said, while it is not our preference, we are not opposed to making separate projections for Hispanic White, Black, and Other, which would be required if we were to continue with our current approach represented by Option 1 (Table 15a). If we were to do so, we could either continue using NCHS data with our custom allocations for 2020 or apply the modified race data for 2020 and earlier years. However, we recommend using either Option 2, 3, 4, or 5. Option 2 proposes the following racial and/or ethnic

categories: Hispanic (regardless of race); White; Black or African American; Asian; and American Indian or Alaska Native (AIAN), Native Hawaiian and Pacific Islander (NHPI), and Two or More Races. Option 3 includes the following five groups: Hispanic (regardless of race); White; Black or African American; Asian, AIAN, and NHPI; and Two or More Races. Option 4 includes six groups: Hispanic (regardless of race); White; Black or African American; Asian; AIAN and NHPI; and Two or More Races. Option 5 includes seven groups: Hispanic (regardless of race); White; Black or African American; Asian; AIAN; NHPI; and Two or More Races. For the estimates, Option 5 would provide detailed demographic characteristics for these seven groups by age and sex, while for the projections population totals for these groups would be produced in addition to projections by age and sex for total population. In Options 2, 3, 4, and 5 the White; Black or African American; Asian; AIAN; NHPI; and Two or More Races groups would not include Hispanics.

While we believe that any of the above would potentially be an improvement over our current model, Options 2 and 4 provide the opportunity to produce projections for one of the state's fastest growing groups between 2010 and 2020: Non-Hispanic Asians. Creating projections for Non-Hispanic Asians alone, rather than combined with AIAN and NHPI, allows for the additional representation of a larger group. Option 5 would go one step further and provide estimates by age and sex for each of the seven racial and ethnic groups, but projections only in the aggregate for these groups.

4. Recommendation

While ideally projections would be created for as many groups as are included in the census data, this is unfeasible due to low population counts of the smaller groups in many counties and the lack of corresponding institutional data (especially in populations under one hundred persons). However, the fifth option presents an interesting compromise, which would allow us to produce even single year of age projections by sex for the total population and projections for seven racial and ethnic groups by their total population in each county. Since the single year of age cohort change ratios were found to be largely comparable to the five-year ratios, creating projections by single year of age presents a good opportunity to expand on our current county projections. This would also allow us to produce age, sex, and race detail for the estimates separately, using distributions from the most recent vintage of estimates from the Census Bureau. As mentioned above, in Option 5 three datasets would be produced: a set of population estimates for the six

racial groups included in the Census Bureau's estimates series plus Hispanics; a set of population projections for these seven racial and ethnic groups for total population only; and a set of projections for the total population in each county by five-year age group and sex for years ending in zero and five (plus projections by single year of age and sex for all projection years in an additional detailed release). We believe this final option could provide estimates and projections that are potentially more accurate than our current data and deliver more demographic detail than is currently available.

Of the five options presented in this report, we recommend adopting the last one which differentiates between the estimates and projections. To us, it entails the best combination of demographic detail and anticipated accuracy and will satisfy a wide range of data users. Option 5 will provide population estimates by age and sex for additional racial groups, projections of total population for these groups, as well as projections by single year of age and sex for each county for the first time. While this option would not entail population projections by age, sex, race, and ethnicity in combination – e.g., for the population of Hispanic females ages 40-44 in a particular county in 2035 - such detailed projections are of relatively low accuracy and are rarely used. If adopted, there are some issues that would need to be addressed. These include but are not limited to potential changes to the deliverable deadlines; how to treat the Census Bureau's estimates which are produced for July 1 each year rather than April 1; how to deal with the Census Bureau's annual revisions to the estimates for earlier estimate years; and how to create estimates for the population ages 15–17 and 18–19. Additionally, we would need to figure out how to align the population in five-year age groups from the estimates with the those in the projections. Since the five-year age data in the estimates would come from the Census Bureau's estimates, they may not align precisely with the age projections derived by the BEBR county model. Finally, the single year of age projections from our state model would have a different age structure than the 5-year age group projections from our county model, because they are produced with a different methodology and use different input data. While these issues need to be considered, we believe that they can be addressed and see many potential benefits to adopting Option 5.

References

- Arias, Elizabeth., Leibler, Carolyn., Garcia, Marc. & Saenz, Rogelio. (2025). Data impacts of changes in the U.S. Census Bureau procedures for race and ethnicity data. *Population Health.* 29
- Arizona Office of Economic Opportunity. (2022). Arizona State and County Population Projections, 2022-2060: Methodology Report.
- Jones, Nicholas., Marks, Rachel., Ramirez, Roberto., & Rios-Vargas, Merarys. (2021). 2020 Census Illuminates Racial and Ethnic Composition of the Country. *United States Census Bureau*. <u>https://www.census.gov/library/stories/2021/08/improved-race-ethnicity-measures-reveal-united-states-population-much-more-Multiracial.html</u>
- Lam-Hine, Tracy., Forthal, Sarah., Chin, Helen. & Johnson, Candice. (2025). The (Upper) Case for Capitalizing Multiracial. *Health Affairs Forefront*. <u>https://www.healthaffairs.org/content/forefront/upper-case-capitalizing-Multiracial</u>
- Marks, Rachel. & Rios-Vargas, Merarys. (2021). Improvements to the 2020 Census Race and Hispanic Origin Question Designs, Data Processing, and Coding Procedures. *Random Samplings Blog, August 3. United States Census Bureau*.
- National Academies of Sciences, Engineering, and Medicine (NASEM). (2023). Assessing the 2020 census: Final report. Washington, DC: The National Academies Press.
- National Center for Health Statistics (NCHS). (2022). U.S. Census Populations with Bridged Race Categories. National Vital Statistics System.
- National Center for Health Statistics (NCHS). (2003). United States Census 2000 Population with Bridged Race Categories. Vital and Health Statistics, Series 2, Number 135. https://www.cdc.gov/nchs/data/series/sr_02/sr02_135.pdf
- Office of Management and Budget (OMB). (2024). *Revisions to OMB's Statistical Policy Directive No.* 15: Standards for Maintaining, Collecting, and Presenting Federal Data on Race and Ethnicity. Federal Register, Vol. 89, No. 62.
- Office of Management and Budget (OMB). (1997). *Revisions to the Standards for the Classification* of Federal Data on Race and Ethnicity. Federal Register, Vol. 62, No. 210.

- Rayer, Stefan (2023). A Further Evaluation of Population Estimates Made Over the Previous Decade; Recommended Methodology Changes for the Coming Decade. Report prepared for the Florida Legislature, June 2023.
- Rayer, Stefan. & Comfort, Conor. (2024). Population Projections By Age, Sex, Race, and Hispanic Origin for Florda and Its Counties, 2025–2050, With Estimates for 2023. *Florida Population Studies, Bulletin 199*. <u>https://bebr.ufl.edu/wp-</u> <u>content/uploads/2024/11/projections_2024_asrh.pdf</u>
- Smith, Stanley K., Tayman, Jeff. & Swanson, David A. (2013). *A Practitioner's Guide to State and Local Population Projections*. Springer: Dordrecht, Netherlands.
- Starr, Paul. & Pao, Christina. (2024). The Multiracial Complication: The 2020 Census and the Fictitious Multiracial Boom. *Sociological Science*. *11*: 1107-1123.
- United States Census Bureau (USCB). (2025). 2020 Modified Age & Race Census File Methodology Statement. https://www2.census.gov/programs-surveys/popest/technicaldocumentation/methodology/modified-race-summary-file-method/marc2020-impraceus.pdf
- United States Census Bureau (USCB). (2021). *The Federal-State Cooperative for Population Projections (FSCPP)*. <u>https://www.census.gov/programs-surveys/popproj/about/fscpp.html</u>
- Ventura, Ilana. & Flores, Rene. (2025). The "Rise" of Multiracials? Examining the Growth in Multiracial Identification in the 2020 U.S. Census. *RSF: The Russell Sage Foundation Journal of the Social Sciences, 11 (1)*. <u>https://www.rsfjournal.org/content/11/1/44</u>

Race / Ethnicity	Census 2020		MARC 2020		Imputed in MARC		M2020 vs.	C2020 vs.	M2020 vs.
Race / Ethnicity	Number	Percent	Number	Percent	Number	Percent	C2020 (%)	C2010 (%)	*M2010 (%)
Total Population	331,449,281	100.0	331,449,390	100.0	109	0.0	0.0	7.4	7.4
One race	297,600,338	89.8	316,892,557	95.6	19,292,219	6.1	6.5	-0.7	5.0
White	204,277,273	61.6	244,773,506	73.8	40,496,233	16.5	19.8	-8.6	1.2
Black	41,104,200	12.4	44,260,956	13.4	3,156,756	7.1	7.7	5.6	10.0
AIAN	3,727,135	1.1	6,328,596	1.9	2,601,461	41.1	69.8	27.1	69.2
Asian	19,886,049	6.0	20,669,237	6.2	783,188	3.8	3.9	35.5	36.3
NHPI	689,966	0.2	860,262	0.3	170,296	19.8	24.7	27.8	27.5
SOR	27,915,715	8.4	(X)	(X)	(X)	(X)	(X)	46.1	(X)
Two +	33,848,943	10.2	14,556,833	4.4	-19,292,110	-132.5	-57.0	275.7	108.4
Hispanic	62,080,044	18.7	62,079,047	18.7	-997	0.0	0.0	23.0	23.0
One race	41,780,084	12.6	58,425,209	17.6	16,645,125	28.5	39.8	-11.9	19.0
White	12,579,626	3.8	49,702,296	15.0	37,122,670	74.7	295.1	-52.9	11.4
Black	1,163,862	0.4	3,647,470	1.1	2,483,608	68.1	213.4	-6.4	56.7
AIAN	1,475,436	0.4	4,043,079	1.2	2,567,643	63.5	174.0	115.3	173.9
Asian	267,330	0.1	811,799	0.2	544,469	67.1	203.7	27.8	63.0
NHPI	67,948	0.0	220,565	0.1	152,617	69.2	224.6	16.3	24.3
SOR	26,225,882	7.9	(X)	(X)	(X)	(X)	(X)	41.7	(X)
Two +	20,299,960	6.1	3,653,838	1.1	-16,646,122	-455.6	-82.0	567.2	164.8
Not Hispanic	269,369,237	81.3	269,370,343	81.3	1,106	0.0	0.0	4.3	4.3
One race	255,820,254	77.2	258,467,348	78.0	2,647,094	1.0	1.0	1.4	2.3
White	191,697,647	57.8	195,071,210	58.9	3,373,563	1.7	1.8	-2.6	-1.1
Black	39,940,338	12.1	40,613,486	12.3	673,148	1.7	1.7	6.0	7.1
AIAN	2,251,699	0.7	2,285,517	0.7	33,818	1.5	1.5	0.2	1.0
Asian	19,618,719	5.9	19,857,438	6.0	238,719	1.2	1.2	35.6	35.4
NHPI	622,018	0.2	639,697	0.2	17,679	2.8	2.8	29.2	28.7
SOR	1,689,833	0.5	(X)	(X)	(X)	(X)	(X)	179.7	(X)
Two +	13,548,983	4.1	10,902,995	3.3	-2,645,988	-24.3	-19.5	127.1	94.5

 Table 1. Census vs. Modified Race Distributions for 2020, Including Change Since 2010: United States

Key: C2020 = 2020 Census; C2010 = 2010 Census; M2020 = 2020 Modified Age & Race Census File; M2010 = 2010 Modified Race Summary

File; AIAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Other Pacific Islander; SOR = Some Other Race; Two + = Two or

Race / Ethnicity	Census 2020		MARC 2020		Imputed in	Imputed in MARC		C2020 vs.	M2020 vs.
Race / Ethnicity	Number	Percent	Number	Percent	Number	Percent	C2020 (%)	C2010 (%)	*M2010 (%)
Total Population	21,538,187	100.0	21,538,209	100.0	22	0.0	0.0	14.6	14.6
One race	17,986,115	83.5	20,776,420	96.5	2,790,305	13.4	15.5	-1.9	12.5
White	12,422,961	57.7	16,410,468	76.2	3,987,507	24.3	32.1	-12.0	10.8
Black	3,246,381	15.1	3,517,945	16.3	271,564	7.7	8.4	8.2	14.3
AIAN	94,795	0.4	150,410	0.7	55,615	37.0	58.7	32.7	68.8
Asian	643,682	3.0	676,101	3.1	32,419	4.8	5.0	41.5	42.6
NHPI	14,014	0.1	21,496	0.1	7,482	34.8	53.4	14.1	14.4
SOR	1,564,282	7.3	(X)	(X)	(X)	(X)	(X)	129.7	(X)
Two +	3,552,072	16.5	761,789	3.5	-2,790,283	-366.3	-78.6	651.6	129.3
Hispanic	5,697,240	26.5	5,697,116	26.5	-124	0.0	0.0	34.9	34.9
One race	2,937,311	13.6	5,501,580	25.5	2,564,269	46.6	87.3	-27.3	32.4
White	1,322,458	6.1	5,028,411	23.3	3,705,953	73.7	280.2	-59.0	29.5
Black	119,329	0.6	327,048	1.5	207,719	63.5	174.1	-19.8	59.9
AIAN	52,626	0.2	106,136	0.5	53,510	50.4	101.7	117.5	158.1
Asian	14,056	0.1	31,351	0.1	17,295	55.2	123.0	46.3	77.7
NHPI	2,493	0.0	8,634	0.0	6,141	71.1	246.3	-2.7	12.4
SOR	1,426,349	6.6	(X)	(X)	(X)	(X)	(X)	125.4	(X)
Two +	2,759,929	12.8	195,536	0.9	-2,564,393	#######	-92.9	1,420.1	181.4
Not Hispanic	15,840,947	73.5	15,841,093	73.5	146	0.0	0.0	8.7	8.7
One race	15,048,804	69.9	15,274,840	70.9	226,036	1.5	1.5	5.3	6.7
White	11,100,503	51.5	11,382,057	52.8	281,554	2.5	2.5	2.0	4.2
Black	3,127,052	14.5	3,190,897	14.8	63,845	2.0	2.0	9.7	11.0
AIAN	42,169	0.2	44,274	0.2	2,105	4.8	5.0	-10.8	-7.7
Asian	629,626	2.9	644,750	3.0	15,124	2.3	2.4	41.4	41.2
NHPI	11,521	0.1	12,862	0.1	1,341	10.4	11.6	18.5	15.8
SOR	137,933	0.6	(X)	(X)	(X)	(X)	(X)	184.6	(X)
Two +	792,143	3.7	566,253	2.6	-225,890	-39.9	-28.5	172.2	115.5

Table 2. Census vs. Modified Race Distributions for 2020, Including Change Since 2010: Florida

Key: C2020 = 2020 Census; C2010 = 2010 Census; M2020 = 2020 Modified Age & Race Census File; M2010 = 2010 Modified Race Summary

File; AIAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Other Pacific Islander; SOR = Some Other Race; Two + = Two or

Deee / Ethnicity	Census 2	010	MRSF 20)10	Imputed in	MRSF	MRSF vs.
Race / Ethnicity	Number	Percent	Number	Percent	Number	Percent	C2010 (%)
Total Population	308,745,538	100.0	308,745,538	100.0	0	0.0	0.0
One race	299,736,465	97.1	301,761,343	97.7	2,024,878	0.7	0.7
White	223,553,265	72.4	241,937,061	78.4	18,383,796	7.6	8.2
Black	38,929,319	12.6	40,250,635	13.0	1,321,316	3.3	3.4
AIAN	2,932,248	0.9	3,739,506	1.2	807,258	21.6	27.5
Asian	14,674,252	4.8	15,159,516	4.9	485,264	3.2	3.3
NHPI	540,013	0.2	674,625	0.2	134,612	20.0	24.9
SOR	19,107,368	6.2	(X)	(X)	(X)	(X)	(X)
Two +	9,009,073	2.9	6,984,195	2.3	-2,024,878	-29.0	-22.5
Hispanic	50,477,594	16.3	50,477,594	16.3	0	0.0	0.0
One race	47,435,002	15.4	49,097,875	15.9	1,662,873	3.4	3.5
White	26,735,713	8.7	44,618,105	14.5	17,882,392	40.1	66.9
Black	1,243,471	0.4	2,328,113	0.8	1,084,642	46.6	87.2
AIAN	685,150	0.2	1,476,248	0.5	791,098	53.6	115.5
Asian	209,128	0.1	498,000	0.2	288,872	58.0	138.1
NHPI	58,437	0.0	177,409	0.1	118,972	67.1	203.6
SOR	18,503,103	6.0	(X)	(X)	(X)	(X)	(X)
Two +	3,042,592	1.0	1,379,719	0.4	-1,662,873	-120.5	-54.7
Not Hispanic	258,267,944	83.7	258,267,944	83.7	0	0.0	0.0
One race	252,301,463	81.7	252,663,468	81.8	362,005	0.1	0.1
White	196,817,552	63.7	197,318,956	63.9	501,404	0.3	0.3
Black	37,685,848	12.2	37,922,522	12.3	236,674	0.6	0.6
AIAN	2,247,098	0.7	2,263,258	0.7	16,160	0.7	0.7
Asian	14,465,124	4.7	14,661,516	4.7	196,392	1.3	1.4
NHPI	481,576	0.2	497,216	0.2	15,640	3.1	3.2
SOR	604,265	0.2	(X)	(X)	(X)	(X)	(X)
Two +	5,966,481	1.9	5,604,476	1.8	-362,005	-6.5	-6.1

Table 3. Census vs. Modified Race Distributions for 2010: United States

Key: MRSF 2010 = 2010 Modified Race Summary File; AIAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Other Pacific Islander; SOR = Some Other Race; Two + = Two or More Races

Table 4. Census vs.	Census 2		MRSF 20		Imputed in	MRSF	MRSF vs.
Race / Ethnicity	Number	Percent	Number	Percent	Number	Percent	C2010 (%)
Total Population	18,801,310	100.0	18,801,310	100.0	0	0.0	0.0
One race	18,328,733	97.5	18,469,042	98.2	140,309	0.8	0.8
White	14,109,162	75.0	14,808,867	78.8	699,705	4.7	5.0
Black	2,999,862	16.0	3,078,067	16.4	78,205	2.5	2.6
AIAN	71,458	0.4	89,119	0.5	17,661	19.8	24.7
Asian	454,821	2.4	474,199	2.5	19,378	4.1	4.3
NHPI	12,286	0.1	18,790	0.1	6,504	34.6	52.9
SOR	681,144	3.6	(X)	(X)	(X)	(X)	(X)
Two +	472,577	2.5	332,268	1.8	-140,309	-42.2	-29.7
Hispanic	4,223,806	22.5	4,223,806	22.5	0	0.0	0.0
One race	4,042,243	21.5	4,154,307	22.1	112,064	2.7	2.8
White	3,224,440	17.2	3,883,339	20.7	658,899	17.0	20.4
Black	148,762	0.8	204,520	1.1	55,758	27.3	37.5
AIAN	24,193	0.1	41,128	0.2	16,935	41.2	70.0
Asian	9,605	0.1	17,641	0.1	8,036	45.6	83.7
NHPI	2,561	0.0	7,679	0.0	5,118	66.6	199.8
SOR	632,682	3.4	(X)	(X)	(X)	(X)	(X)
Two +	181,563	1.0	69,499	0.4	-112,064	-161.2	-61.7
Not Hispanic	14,577,504	77.5	14,577,504	77.5	0	0.0	0.0
One race	14,286,490	76.0	14,314,735	76.1	28,245	0.2	0.2
White	10,884,722	57.9	10,925,528	58.1	40,806	0.4	0.4
Black	2,851,100	15.2	2,873,547	15.3	22,447	0.8	0.8
AIAN	47,265	0.3	47,991	0.3	726	1.5	1.5
Asian	445,216	2.4	456,558	2.4	11,342	2.5	2.5
NHPI	9,725	0.1	11,111	0.1	1,386	12.5	14.3
SOR	48,462	0.3	(X)	(X)	(X)	(X)	(X)
Two +	291,014	1.5	262,769	1.4	-28,245	-10.7	-9.7

Table 4. Census vs. Modified Race Distributions for 2010: Florida

Key: MRSF 2010 = 2010 Modified Race Summary File; AIAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Other Pacific Islander; SOR = Some Other Race; Two + = Two or More Races

Race / Ethnicity	Census 2	010	NCHS 20	010	BEBR 2010	
Race / Ethnicity	Number	Percent	Number	Percent	Number	Percent
Total Population	18,801,310	100.0	18,801,310	100.0	18,801,310	100.0
Two +	472,577	2.5	(X)	(X)	(X)	(X)
Hispanic	4,223,806	22.5	4,223,806	22.5	4,223,806	22.5
Not Hispanic	14,577,504	77.5	14,577,504	77.5	14,577,504	77.5
White	10,884,722	57.9	11,065,171	58.9	11,028,987	58.7
Black	2,851,100	15.2	2,950,092	15.7	2,952,546	15.7
*Asian	502,206	2.7	562,241	3.0	595,971	3.2
SOR	48,462	0.3	(X)	(X)	(X)	(X)
Two +	291,014	1.5	(X)	(X)	(X)	(X)

Table 5. Two or More Races Allocation Comparison, Florida 2010: NCHS v. BEBR

Table 6. Modified Race File v. BEBR Custom Allocations, Florida 2020

Race / Ethnicity	Census 2	020	MARC 20	020	BEBR 2020	
Race / Ethnicity	Number	Percent	Number	Percent	Number	Percent
Total Population	21,538,187	100.0	21,538,209	100.0	21,538,187	100.0
Two +	3,552,072	18.9	761,789	4.1	(X)	(X)
Hispanic	5,697,240	30.3	5,697,116	30.3	5,697,240	30.3
Not Hispanic	15,840,947	84.3	15,841,093	84.3	15,840,947	84.3
White	11,100,503	59.0	11,382,057	60.5	11,541,511	61.4
Black	3,127,052	16.6	3,190,897	17.0	3,375,286	18.0
*Asian	683,316	3.6	701,886	3.7	924,150	4.9
SOR	137,933	0.7	(X)	(X)	(X)	(X)
Two +	792,143	4.2	566,253	3.0	(X)	(X)

* includes American Indian and Alaska Native, and Native Hawaiian and Other Pacific Islander

Key: SOR = Some Other Race; Two + = Two or More Races

Table 7. Overview of Other State Projections

State	Racial / Ethnic Groups	Combined Race & Ethnicity	Projection Years	Publication Frequency
Arizona	W, B, *A, AIAN, O, H	Yes	2022–2060	Three times a decade (in years ending in 2,5, and 8)
California	W,B, A, AIAN, NHPI, MULTI, H	Yes	2020–2070	Periodically
Georgia	W, B, O, H	Yes	2024–2060	Annual
Kansas	W, B, O, H	Yes	2022–2072	Periodically
North Carolina	W, B, *A, AIAN, O, HW, HNW	No	2024–2060	Periodically
Tennessee	W, B, O, H	Yes	2022–2070	Bi-Annual
Texas	W, B, A, O, H	Yes	2020–2060	Bi-Annual

Key: W=Non-Hispanic White; B=Non-Hispanic Black; A=Non-Hispanic Asian; AIAN=Non-Hispanic American Indian or Alaska Native; NHPI=Non-Hispanic Native Hawaiian or Other Pacific Islander; O= Non-Hispanic Other; MULTI=Non-Hispanic Multiracial; H=Hispanic; HW=Hispanic White; HNW=Hispanic Nonwhite * Includes Native Hawaiian and Other Pacific Islander

	Numerical Difference									
County	Non-Hispanic Non-Hispanic White Nonwhite		Hispanic	Total						
Baker	10	-8	3	5						
Bradford	-16	-2	-8	-26						
Calhoun	-1	18	0	17						
Columbia	19	-12	35	42						
DeSoto	-1	10	-22	-13						
Dixie	-7	5	10	8						
Franklin	-3	0	-4	-7						
Gadsden	0	-2	-21	-23						
Gilchrist	-2	4	-18	-16						
Glades	2	18	-15	5						
Gulf	12	-21	-6	-15						
Hamilton	13	24	-20	17						
Hardee	-1	12	-19	-8						
Holmes	-2	-24	8	-18						
Jackson	22	-12	-25	-15						
Jefferson	11	-27	6	-10						
Lafayette	12	-2	-2	8						
Liberty	-11	12	-4	-3						
Madison	21	-28	9	2						
Okeechobee	-22	16	-6	-12						
Santa Rosa	-5	0	-10	-15						
Sumter	-16	17	-1	0						
Suwannee	-8	5	-3	-6						
Taylor	-25	7	9	-9						
Union	18	-14	-4	0						
Wakulla	-17	-19	11	-25						
Walton	-1	-14	1	-14						
Washington	9	1	-9	1						

Table 8. Comparison of Institutional Data, 2020: MARC vs. DHC
		Numerical Di	fference			
Race / Ethnicity / Age Group	Bradford	Calhoun	Franklin	Gulf	Hamilton	Jackson
Non-Hispanic White	-10	-1	2	12	11	13
18 to 24 years	4	5	-2	10	4	24
25 to 34 years	2	-9	4	0	5	-14
35 to 44 years	-10	10	0	-6	5	3
45 to 54 years	-5	1	1	13	-1	-16
55 to 64 years	6	8	-12	-3	-4	8
65 and older	-7	-16	11	-2	2	8
Non-Hispanic Nonwhite	-1	18	-4	-18	22	-14
18 to 24 years	-12	-6	-6	-4	3	-5
25 to 34 years	2	16	-1	7	-6	4
35 to 44 years	4	-21	2	-3	13	0
45 to 54 years	6	-3	15	-17	6	7
55 to 64 years	-6	6	-1	3	3	-5
65 and older	5	26	-13	-4	3	-15
Hispanic	-6	0	1	-6	-14	-18
18 to 24 years	-2	4	1	-11	-2	-23
25 to 34 years	2	3	4	-7	6	11
35 to 44 years	25	8	7	7	-5	-33
45 to 54 years	-20	9	-7	18	-3	27
55 to 64 years	1	-18	-3	-1	-14	-6
65 and older	-12	-6	-1	-12	4	6

 Table 9. Comparison of Institutional Population in Select Counties, 2020: MARC vs. DHC

		Numerical Di	fference			
Race / Ethnicity / Age Group	Lafayette	Liberty	Taylor	Union	Wakulla	Washington
Non-Hispanic White	12	-12	-14	27	-15	8
18 to 24 years	-3	-2	-5	-2	4	4
25 to 34 years	0	-10	-1	-6	-15	9
35 to 44 years	-16	3	-7	-5	-8	5
45 to 54 years	4	-2	8	16	-9	4
55 to 64 years	3	-2	-19	31	13	-6
65 and older	24	1	10	-7	0	-8
Non-Hispanic Nonwhite	-4	8	-2	-14	-18	-1
18 to 24 years	2	7	-2	6	-9	-14
25 to 34 years	13	11	5	-11	9	19
35 to 44 years	-5	-18	3	-10	4	6
45 to 54 years	-1	5	-3	11	-9	-10
55 to 64 years	8	-3	5	-1	-7	15
65 and older	-21	6	-10	-9	-6	-17
Hispanic	-1	-3	8	-8	10	-8
18 to 24 years	-3	-6	5	-5	-1	3
25 to 34 years	-1	-1	-5	11	2	-21
35 to 44 years	-2	-5	7	1	-1	-10
45 to 54 years	5	8	-2	-26	12	3
55 to 64 years	0	7	4	1	2	13
65 and older	0	-6	-1	10	-4	4

 Table 9. Comparison of Institutional Population in Select Counties, 2020: MARC vs. DHC (continued)

Race / Ethnicity / Age Group	Bradford	Calhoun	Franklin	Gulf	Hamilton	Jackson
Non-Hispanic White	1,352	663	416	487	750	2,033
Under 18 years	3	0	5	0	0	0
18 to 64 years	1,306	634	397	474	728	1,971
65 years and over	43	29	14	13	22	62
Non-Hispanic Nonwhite	2,091	691	657	489	1,261	2,788
Under 18 years	0	0	0	3	0	0
18 to 64 years	2,041	677	644	471	1,233	2,752
65 years and over	50	14	13	15	28	36
Hispanic	548	202	203	140	302	607
Under 18 years	2	0	0	0	0	0
18 to 64 years	533	195	200	130	296	597
65 years and over	13	7	3	10	6	10
Total	3,991	1,556	1,276	1,116	2,313	5,428
Under 20 years	21	1	9	7	0	6
20 to 24 years	252	105	98	96	135	328
25 to 29 years	571	244	237	173	334	846
30 to 34 years	685	248	233	210	380	909
35 to 39 years	660	273	202	179	350	869
40 to 44 years	475	204	158	142	300	709
45 to 49 years	423	142	102	100	254	590
50 to 54 years	345	126	94	78	237	485
55 to 59 years	293	106	59	59	179	364
60 to 64 years	160	57	54	34	88	214
65 to 69 years	78	32	24	20	35	68
70 to 74 years	13	9	3	16	21	33
75 to 79 years	13	9	1	0	0	6
80 to 84 years	2	0	2	0	0	1
85 years and over	0	0	0	2	0	0

Table 10. Census 2020 Correctional Facility Population for Males in Select Counties

Race / Ethnicity / Age Group	Lafayette	Liberty	Taylor	Union	Wakulla	Washington
Non-Hispanic White	542	679	798	2,412	1,274	959
Under 18 years	0	0	8	0	0	0
18 to 64 years	519	667	757	1,972	1,193	909
65 years and over	23	12	33	440	81	50
Non-Hispanic Nonwhite	353	865	1,173	1,981	1,416	895
Under 18 years	0	0	2	2	1	2
18 to 64 years	334	854	1,146	1,741	1,348	872
65 years and over	19	11	25	238	67	21
Hispanic	189	223	358	352	565	192
Under 18 years	0	3	0	0	0	0
18 to 64 years	185	209	347	323	544	188
65 years and over	4	11	11	29	21	4
Total	1,404	1,767	2,329	4,745	3,255	2,046
Under 20 years	5	3	13	28	1	9
20 to 24 years	100	116	155	195	117	124
25 to 29 years	242	292	326	392	368	284
30 to 34 years	275	310	387	531	521	295
35 to 39 years	234	280	393	498	457	344
40 to 44 years	193	211	314	456	426	283
45 to 49 years	101	172	231	375	366	192
50 to 54 years	102	152	199	463	366	183
55 to 59 years	68	126	156	618	275	163
60 to 64 years	35	71	86	482	189	94
65 to 69 years	30	19	27	366	118	45
70 to 74 years	12	12	30	230	39	16
75 to 79 years	7	1	12	86	9	13
80 to 84 years	0	2	0	21	3	1
85 years and over	0	0	0	4	0	0

Table 10. Census 2020 Correctional Facility Population for Males in Select Counties (continued)

Group Quarter Type / Age Group	Bradford	Calhoun	Franklin	Gulf	Hamilton	Jackson
Federal Detention Centers	31	0	0	0	0	19
Under 18 years	0	0	0	0	0	0
18 to 64 years	28	0	0	0	0	19
65 years and over	3	0	0	0	0	0
Federal Prisons	0	0	0	0	0	115
Under 18 years	0	0	0	0	0	0
18 to 64 years	0	0	0	0	0	115
65 years and over	0	0	0	0	0	0
State Prisons	3,409	1,556	1,233	853	2,270	5,166
Under 18 years	0	0	2	0	0	0
18 to 64 years	3,314	1,506	1,203	824	2,221	5,059
65 years and over	95	50	28	29	49	107
Local Jails and Confinement Facilities	152	0	43	39	43	128
Under 18 years	5	0	3	1	0	0
18 to 64 years	142	0	38	32	36	127
65 years and over	5	0	2	6	7	1
Correctional Residential Facilties	399	0	0	224	0	0
Under 18 years	0	0	0	2	0	0
18 to 64 years	396	0	0	219	0	0
65 years and over	3	0	0	3	0	0

 Table 11. Census 2020 Correctional Facility Population by Type for Males in Select Counties

Group Quarter Type / Age Group	Lafayette	Liberty	Taylor	Union	Wakulla	Washington
	<u> </u>	-				
Federal Detention Centers	0	0	0	0	79	15
Under 18 years	0	0	0	0	0	2
18 to 64 years	0	0	0	0	73	13
65 years and over	0	0	0	0	6	0
Federal Prisons	0	0	0	0	0	0
Under 18 years	0	0	0	0	0	0
18 to 64 years	0	0	0	0	0	0
65 years and over	0	0	0	0	0	0
State Prisons	1,386	1,737	2,268	4,650	2,954	1,954
Under 18 years	0	0	7	2	0	0
18 to 64 years	1,338	1,704	2,199	3,966	2,798	1,882
65 years and over	48	33	62	682	156	72
Local Jails and Confinement Facilities	18	30	61	37	222	77
Under 18 years	0	3	3	0	1	0
18 to 64 years	17	26	51	33	214	74
65 years and over	1	1	7	4	7	3
Correctional Residential Facilties	0	0	0	58	0	0
Under 18 years	0	0	0	0	0	0
18 to 64 years	0	0	0	37	0	0
65 years and over	0	0	0	21	0	0

 Table 11. Census 2020 Correctional Facility Population by Type for Males in Select Counties (continued)

County	Federal	Federal	State Prisons	Local Jails	Correctional	Total
_	Detention	Prisons			Residential	Correctional
Baker	2.7	0.0	79.3	18.1	0.0	85.4
Bradford	0.7	0.0	85.4	3.7	10.2	98.9
Calhoun	0.0	0.0	100.0	0.0	0.0	97.3
Columbia	0.0	0.0	84.4	7.1	8.6	91.7
DeSoto	0.0	0.0	94.5	5.5	0.0	82.8
Dixie	0.9	0.0	93.9	4.9	0.4	99.7
Franklin	0.0	0.0	96.9	3.1	0.0	96.4
Gilchrist	0.0	0.0	79.3	18.4	2.3	99.4
Glades	4.4	0.0	69.4	26.2	0.0	84.6
Gulf	0.0	0.0	76.7	3.0	20.4	98.4
Hamilton	0.0	0.0	98.4	1.6	0.0	99.1
Hardee	0.0	0.0	100.0	0.0	0.0	93.8
Holmes	0.0	0.0	92.9	7.1	0.0	98.6
Jackson	0.4	2.2	95.1	2.4	0.0	94.1
Jefferson	0.0	0.0	96.1	3.9	0.0	98.1
Lafayette	0.0	0.0	98.8	1.3	0.0	99.2
Liberty	0.0	0.0	98.5	1.5	0.0	98.0
Madison	0.0	0.0	95.6	4.4	0.0	96.3
Okeechobee	0.0	0.0	100.0	0.1	0.0	95.0
Santa Rosa	0.4	0.0	94.1	5.5	0.0	97.4
Sumter	0.0	77.8	18.9	3.4	0.0	99.5
Suwannee	0.0	0.0	94.1	5.9	0.0	98.1
Taylor	0.0	0.0	97.7	2.3	0.0	98.5
Union	0.0	0.0	98.3	0.8	0.9	100.0
Wakulla	2.4	0.0	90.7	6.9	0.0	99.6
Walton	0.0	0.0	87.2	12.8	0.0	95.9
Washington	0.7	0.0	95.6	3.8	0.0	97.4

Table 12. Proportion of Correctional Facility Type to Total Correctional Facility Population for MalesAges 18–64, Census 2020

	Nu	merical Difference	e	
County	Non-Hispanic White	Non-Hispanic Nonwhite	Hispanic	Total
Baker	478	-88	257	646
Bradford	183	99	183	466
Calhoun	297	4	-48	253
Columbia	355	-504	274	125
DeSoto	200	190	396	786
Dixie	-15	144	77	206
Franklin	60	84	46	191
Gilchrist	200	-25	31	206
Glades	107	221	652	980
Gulf	132	-9	7	130
Hamilton	72	45	40	157
Hardee	-39	563	-309	215
Holmes	269	11	125	405
Jackson	640	336	-48	927
Jefferson	25	115	33	173
Lafayette	135	-26	39	148
Liberty	37	56	28	121
Madison	328	32	24	383
Okeechobee	174	154	-123	205
Santa Rosa	572	215	443	1,230
Sumter	1,069	-60	-106	903
Suwannee	252	249	142	643
Taylor	16	118	93	227
Union	162	-179	-1	-18
Wakulla	171	-93	335	413
Walton	538	241	93	873
Washington	302	66	53	421

Table 13. MARC Group Quarters Population vs. BEBR Institutional Population, 2020

			0.80 t	o 1.25					0.67	to 1.50					0.50	to 2.00		
Race/ Ethnicity	NC	CHS	MA	ARC	D	HC	NC	CHS	MA	ARC	D	HC	NC	CHS	MA	ARC	D	HC
	М	F	М	F	М	F	М	F	М	F	М	F	М	F	М	F	М	F
Total Population	77.6	76.2	78.4	75.0	75.7	74.8	95.3	95.3	95.4	95.3	95.8	95.1	99.0	99.0	99.1	98.9	99.5	99.0
Hispanic	42.4	33.6	43.7	36.3	42.0	34.2	72.8	67.5	74.1	70.0	72.8	67.4	92.5	90.5	93.0	93.2	92.7	90.5
White	52.0	56.5	44.0	39.1	10.8	9.7	72.5	75.0	75.5	74.1	19.8	18.9	87.6	89.7	91.5	92.4	44.9	50.2
Black	5.7	4.6	22.5	18.9	20.0	19.4	10.8	8.5	41.3	37.6	31.8	31.6	24.8	20.8	63.9	58.5	51.4	46.6
AIAN	3.0	1.2	10.6	8.7	9.8	9.6	6.0	2.7	20.0	14.8	17.2	16.3	9.6	6.5	36.2	29.7	31.0	29.5
Asian	0.4	0.9	11.3	12.4	9.7	9.3	1.5	1.6	20.8	20.1	14.6	14.6	2.7	3.6	36.1	35.1	24.3	25.4
NHPI	(X)	(X)	8.1	8.6	6.5	4.7	(X)	(X)	15.3	14.6	8.7	6.2	(X)	(X)	24.4	22.9	12.4	11.4
SOR	(X)	(X)	(X)	(X)	18.9	15.7	(X)	(X)	(X)	(X)	37.4	30.8	(X)	(X)	(X)	(X)	67.8	61.4
Two +	(X)	(X)	7.2	7.2	1.7	2.6	(X)	(X)	13.1	12.1	2.2	3.1	(X)	(X)	32.3	28.5	4.6	5.1
Not Hispanic	80.1	77.7	79.6	78.2	80.1	77.7	95.6	96.0	95.6	96.1	95.6	96.0	99.3	99.0	99.3	99.0	99.3	99.0
White	81.1	79.1	82.7	79.6	82.8	79.4	96.3	95.8	96.5	95.8	96.3	95.9	99.3	99.0	99.3	99.0	99.3	99.0
Black	58.6	69.3	60.0	72.5	57.7	69.3	80.7	88.3	81.0	89.6	80.2	87.7	92.9	97.5	93.2	98.6	92.4	96.8
AIAN	10.4	8.5	27.7	27.1	25.9	27.2	18.3	16.5	46.4	47.5	41.2	41.0	39.3	34.2	64.7	65.7	61.9	60.0
Asian	23.9	20.3	30.8	25.6	31.6	24.5	47.3	42.9	51.4	48.3	50.4	45.9	71.1	71.0	69.3	68.5	67.5	70.5
NHPI	(X)	(X)	14.9	14.1	12.1	11.9	(X)	(X)	24.1	22.4	19.4	18.8	(X)	(X)	34.5	33.3	30.7	30.8
SOR	(X)	(X)	(X)	(X)	4.6	6.0	(X)	(X)	(X)	(X)	7.6	9.2	(X)	(X)	(X)	(X)	18.3	20.3
Two +	(X)	(X)	10.7	9.6	6.8	5.6	(X)	(X)	25.7	21.6	14.3	12.4	(X)	(X)	52.1	44.3	36.1	32.3

Table 14. Percentage of Hamilton-Perry Ratios within Three Range Bands by Race, Ethnicity, and Sex: NCHS, MARC, and DHC file, 2010–2020

Note: In NCHS, Asian includes Native Hawaiian and Other Pacific Islander.

Key: M = Male; F = Female; AIAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Other Pacific Islander; SOR = Some Other Race; Two + = Two or More Races

Table 15a. Percentage of Hamilton-Perry Ratios within Three Range Bands by Race, Ethnicity, and Sex for Select Groups:NCHS and MARC file, 2010–2020 (Option #1)

	0.80 to 1.25				0.67 to 1.50					0.50 to 2.00			
Race / Ethnicity	NCHS		MARC		NCHS		MARC		NCHS		MARC		
	М	F	М	F	М	F	М	F	М	F	М	F	
HISP White	52.0	56.5	44.0	39.1	72.5	75.0	75.5	74.1	87.6	89.7	91.5	92.4	
HISP Black	5.7	4.6	22.5	18.9	10.8	8.5	41.3	37.6	24.8	20.8	63.9	58.5	
HISP Asian / AIAN / NHPI / TOMR	1.6	2.1	5.5	3.2	3.0	3.5	11.4	9.6	6.7	6.6	29.1	26.6	
NH White	81.1	79.1	82.7	79.6	96.3	95.8	96.5	95.8	99.3	99.0	99.3	99.0	
NH Black	58.6	69.3	60.0	72.5	80.7	88.3	81.0	89.6	99.3	99.0	93.2	98.6	
NH Asian / AIAN / NHPI / TOMR	18.8	17.6	22.3	17.5	42.7	37.0	45.9	40.7	72.9	72.6	82.2	78.5	

Note: In NCHS, Asian includes Native Hawaiian and Other Pacific Islander.

Table 15b. Percentage of Hamilton-Perry Ratios within Three Range Bands by Race, Ethnicity, and Sex for Select Groups:
MARC file, 2010–2020 (Option #2)

Race / Ethnicity	0.80 t	o 1.25	0.67 t	o 1.50	0.50 to 2.00	
	М	F	М	F	М	F
Hispanic	43.7	36.3	74.1	70.0	93.0	93.2
NH White	82.7	79.6	96.5	95.8	99.3	99.0
NH Black	60.0	72.5	81.0	89.6	93.2	98.6
NH Asian	30.8	25.6	51.4	48.3	69.3	68.5
NH AIAN / NHPI / TOMR	17.3	14.1	35.7	30.0	66.0	58.7

Key: M = Male; F = Female; HISP = Hispanic; NH = Non-Hispanic; AIAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Other Pacific Islander; TOMR= Two or More Races

Table 15c. Percentage of Hamilton-Perry Ratios within Three Range Bands by Race, Ethnicity, and Sex forSelect Groups: MARC file, 2010–2020 (Option #3)

Race / Ethnicity	0.80 to 1.25		0.67 to 1.50		0.50 to 2.00	
	М	F	М	F	М	F
Hispanic	43.7	36.3	74.1	70.0	93.0	93.2
NH White	82.7	79.6	96.5	95.8	99.3	99.0
NH Black	60.0	72.5	81.0	89.6	93.2	98.6
NH Asian / AIAN / NHPI	35.3	28.9	59.1	55.8	80.7	81.7
NH TOMR	10.7	9.6	25.7	21.6	52.1	44.3

Table 15d. Percentage of Hamilton-Perry Ratios within Three Range Bands by Race, Ethnicity, and Sex forSelect Groups: MARC file, 2010–2020 (Option #4)

Page / Ethnicity	0.80 to 1.25		0.67 to 1.50		0.50 to 2.00	
Race / Ethnicity	М	F	М	F	М	F
Hispanic	43.7	36.3	74.1	70.0	93.0	93.2
NH White	82.7	79.6	96.5	95.8	99.3	99.0
NH Black	60.0	72.5	81.0	89.6	93.2	98.6
NH Asian	30.8	25.6	51.4	48.3	69.3	68.5
NH AIAN / NHPI	31.5	26.2	51.4	49.1	70.1	68.9
NH TOMR	10.7	9.6	25.7	21.6	52.1	44.3

Key: M = Male; F = Female; HISP = Hispanic; NH = Non-Hispanic; AIAN = American Indian or Alaska Native; NHPI = Native Hawaiian or Other Pacific Islander; TOMR= Two or More Races

Table 16. Proposed Data Releases for Estimates and Projections by Age, Sex,Race, and Ethnicity (Option #5)

Data Release	Race / Ethnicity	Age
1. Population Estimates by Age, Sex, Race, and Ethnicity	White, Black, AIAN, Asian, NHPI, Multiracial, and Hispanic	5-Year Age Groups (0–4, 5–9,, 80–84, 85+)
2. Population Projections by Race and Ethniciy	White, Black, AIAN, Asian, NHPI, Multiracial, and Hispanic	N/A (Total Population Only)
3a. Population Projections by Age and Sex	Total Population Only	5-Year Age Groups (0–4, 5–9,, 80–84, 85+)
3b. Population Projections by Age and Sex (Detailed Data)	Total Population Only	Single Year of Age (0, 1,, 85+)

Note: All racial/ethnic groups other than Hispanic are Non-Hispanic.

Race / Ethnicity	0.80 to 1.25		0.67 to 1.50		0.50 to 2.00	
	М	F	М	F	М	F
*Single Year of Age	73.8	70.5	93.4	93.4	99.0	98.9
5-year Age Groups (MARC)	78.4	75.0	95.4	95.3	99.1	98.9

 Table 17. Percentage of Hamilton-Perry Ratios within Three Range Bands for Total Population (Option #5)

* 2010 MARC & 2020 DHC Files

This page was intentionally left blank

Population Estimates Comparison, April 1, 2024, BEBR vs. U.S. Census Bureau

The Bureau of Economic and Business Research (BEBR) and the U.S. Census Bureau (USCB) produce population estimates for counties and subcounty areas (incorporated places such as cities, towns, villages; and unincorporated areas) in Florida each year. While the BEBR estimates are for April 1, the USCB estimates are for July 1. To make the analysis more meaningful, both estimates were compared for a common date, April 1, 2024. The USCB estimates were converted to April 1, 2024 by taking three quarters of the July 1, 2023 to July 1, 2024 population change and adding this change to the July 1, 2023 estimate. While not a perfect comparison, it is preferable to comparing the original estimates that are three months apart.

Table 1 provides a comparison of the BEBR and the USCB estimates for April 1, 2024 at the county level and for the state overall. In addition to the two estimates, the table also shows the numeric and percentage difference between the two estimates. For the state overall, the BEBR estimates were about 240,000 persons lower than the USCB estimates, a difference of 1.0%. For 40 counties the BEBR estimates were lower than the USCB estimates, and for 27 counties the BEBR estimates were higher. The differences ranged from -47,567 for Miami-Dade County to +11,516 for Duval County. In percentage terms, Gulf (+6.5%), Okeechobee (-4.8%), Monroe (+3.7%), Lee (-3.6%), and Levy (-3.6%) counties showed the greatest differences.

Table 2 compares the numeric and percentage differences between the BEBR and the USCB county estimates for April 1, 2024 for four population size and four population growth rate categories. The table displays differences calculated with the mean as well as the median. Population size was measured as of April 1, 2020; the rate of population growth refers to the

period April 1, 2010 to April 1, 2020. The table shows that the BEBR estimates for counties in the smallest population size category were on average higher than the USCB estimates, while the opposite was true for counties in the second-smallest size category. For counties in the second-largest size category, the mean and median were very similar, while for the largest size category, the BEBR estimates were about one percent lower for both the mean and median. Across all counties, the mean percent difference was 0.4%.

With respect to population growth, the mean suggests that BEBR estimates were similar for counties in the smallest growth counties. Still, the BEBR estimates were lower by both the mean and median-based measures in all growth categories. Across all counties, the BEBR estimates were on average lower by 3,594 persons or -0.4%, according to the mean. Overall, the data in Table 2 suggest that the two sets of estimates were similar for April 1, 2024, with the BEBR estimates being somewhat lower.

Table 3 is structured analogous to Table 1, but shows the BEBR and the USCB population estimates, as well as the numeric and percentage differences between them, for all subcounty areas in Florida – including incorporated places and unincorporated areas. For 319 subcounty areas the BEBR estimates were lower than the USCB estimates for April 1, 2024; for 1 subcounty area, Melbourne Village, the two sets were identical; and for the remaining 161 subcounty areas the BEBR estimates were higher. For 38% of all subcounty areas, the differences between the two sets of estimates amounted to fewer than 100 persons. The differences where the USCB was higher than BEBR were the greatest for the unincorporated areas of Miami-Dade (-19,975), Orange (-19,700), Pasco (-16,480), and Lee (-16,240) counties, and Miami city (-15,759). The differences where BEBR was higher than the USCB were the greatest in Wildwood city (+12,399), Jacksonville city (+10,361), and the unincorporated areas of Escambia (+4,763), and Leon (+4,605) counties. In percentage terms, for 116 subcounty areas the BEBR and USCB estimates were less than 1% apart; for 114 subcounty areas the differences exceeded 5%. Subcounty areas with the largest percentage differences mostly had small populations.

Tables 4 replicates the population size and growth rate analysis shown in Table 2, but this time for subcounty areas. Subcounty areas were classified into four population size and four population growth rate categories. Once again, population size was measured as of April 1, 2020, and the rate of population growth refers to the period April 1, 2010 to April 1, 2020. The table shows that for all four population size categories the BEBR estimates were somewhat lower than the USCB estimates. For all subcounty areas, the BEBR estimates on average were lower by 501 persons using the mean-based measure, a difference of about 1%; the difference was lower for the median-based measure (47 persons). In terms of past population growth rates, the BEBR estimates were also lower than the USCB estimates for subcounty areas in all four growth rate categories.

What accounts for the differences between the BEBR and the USCB population estimates for 2024? The BEBR estimates for counties and subcounty areas are produced with a housing unit method, in which changes in population are based on changes in occupied housing units (or households). In contrast, the USCB estimates for counties are produced with an administrative record-based component of change method, which updates the 2020 census population using data on births, deaths, and domestic and international migration. For the subcounty estimates, the USCB uses updated housing unit estimates to distribute county population to subcounty areas based on housing unit change. Given that the BEBR and the USCB county estimates are made with different methodologies that utilize different input data, it is not surprising that the resulting estimates sometimes differ. It should also be noted that the population change between the 2023 and 2024 USCB estimates was much higher than usual, increasing by 735,953 persons. Likewise, the 2023 USCB estimates were about 115,000 persons lower than the BEBR estimates, while the 2024 USCB estimates were higher by about 240,000 persons.

We like to conclude by noting that although the BEBR estimates were compared to the USCB estimates in this report, the latter represent an alternative set of estimates, not a benchmark along the lines of the decennial census. There exists no "gold standard" against which both sets of estimates can currently be compared; we have to wait for the 2030 decennial census results to make such a comparison. Historically, the population estimates produced by BEBR have been more accurate, on average, than those from the USCB for Florida.

April 1, 2024 Population Estimates								
County	BEBR	USCB	BEBR	% BEBR				
County	County BEBR USCB		vs. USCB	vs. USCB				
Alachua	296,313	291,077	5,236	1.8				
Baker	28,899	29,129	-230	-0.8				
Вау	196,112	197,894	-1,782	-0.9				
Bradford	27,335	28,003	-668	-2.4				
Brevard	653,703	655,512	-1,809	-0.3				
Broward	1,981,888	2,028,801	-46,913	-2.4				
Calhoun	13,700	13,333	367	2.7				
Charlotte	210,645	210,863	-218	-0.1				
Citrus	166,151	169,340	-3,189	-1.9				
Clay	236,365	235,754	612	0.3				
Collier	408,381	414,691	-6,310	-1.6				
Columbia	72,155	73,814	-1,659	-2.3				
DeSoto	35,487	36,627	-1,140	-3.2				
Dixie	17,555	17,516	39	0.2				
Duval	1,062,593	1,051,078	11,516	1.1				
Escambia	336,358	330,465	5,893	1.8				
Flagler	136,310	135,531	779	0.6				
Franklin	13,321	12,891	430	3.2				
Gadsden	44,853	44,138	715	1.6				

20,109

13,059

15,846

14,181

26,037

45,625

216,966

109,371

1,575,398

19,823

171,726

49,668

15,828

8,528

439,849

-606

-244

1,101

-154

-212

-6,389

-3,262

237

-697

-323

-161

-24

-6,518

-14,949

47

Table 1. County and State Comparison, BEBR vs. U.S. Census Bureau, April 1 2024 Population Estimator

19,503

12,815

16,947

14,228

25,883

45,413

210,577

106,109

20,059

171,029

49,345

15,667

8,504

433,331

1,560,449

Gilchrist

Glades

Hamilton

Hardee

Hendry

Hernando

Highlands

Holmes

Jackson

Jefferson

Lafayette

Lake

Hillsborough

Indian River

Gulf

-3.1

-1.9

6.5

0.3

-0.6

-0.5

-3.0

-3.1

-1.0

1.2

-0.4

-0.7

-1.0

-0.3

-1.5

			BEBR	% BEBR
County	BEBR	USCB	vs. USCB	vs. USCB
Lee	827,016	856,776	-29,760	-3.6
Leon	302,197	300,122	2,075	0.7
Levy	45,845	47,490	-1,645	-3.6
Liberty	8,016	7,909	107	1.3
Madison	18,649	18,354	296	1.6
Manatee	455,356	454,878	478	0.1
Marion	419,510	424,763	-5,253	-1.3
Martin	164,853	165,310	-457	-0.3
Miami-Dade	2,774,841	2,822,408	-47,567	-1.7
Monroe	84,147	81,008	3,140	3.7
Nassau	103,990	103,677	313	0.3
Okaloosa	221,806	220,268	1,538	0.7
Okeechobee	40,230	42,178	-1,948	-4.8
Orange	1,511,568	1,525,551	-13,983	-0.9
Osceola	451,231	462,854	-11,623	-2.6
Palm Beach	1,545,905	1,575,912	-30,007	-1.9
Pasco	633,029	653,348	-20,319	-3.2
Pinellas	971,218	966,228	4,990	0.5
Polk	826,090	845,702	-19,612	-2.4
Putnam	76,138	77,029	-891	-1.2
St. Johns	331,479	331,574	-95	0.0
St. Lucie	385,746	387,049	-1,303	-0.3
Santa Rosa	207,983	206,632	1,351	0.7
Sarasota	479,027	475,473	3,554	0.7
Seminole	493,282	493,267	15	0.0
Sumter	156,743	154,059	2,684	1.7
Suwannee	46,519	47,186	-667	-1.4
Taylor	21,802	21,824	-22	-0.1
Union	16,100	15,802	298	1.9
Volusia	594,643	600,235	-5,592	-0.9
Wakulla	37,313	36,954	359	1.0
Walton	87,728	88,834	-1,106	-1.3
Washington	26,568	26,264	305	1.2
Florida	23,014,551	23,255,378	-240,827	-1.1

Table 1. County and State Comparison, BEBR vs. U.S. Census Bureau, April 1, 2024 Population Estimates

Deputation Size in 2020	BEBR v	s. USCB	% BEBR	N	
Population Size in 2020	Mean	Median	Mean	Median	IN
< 25,000	133	77	0.9	0.8	14
25,000 to 99,999	-342	-323	-0.9	-0.8	17
100,000 to 349,999	163	-95	-0.1	0.0	17
≥ 350,000	-12,614	-6,518	-1.2	-1.3	19
Total	-3,594	-218	-0.4	-0.3	67
Population Growth Rate 2010–2020	BEBR vs. USCB		% BEBR	N	
	Mean	Median	Mean	Median	IN
< 0%	-159	-24	-0.1	-0.3	17
0% to 10%	-2,468	-230	-0.5	-0.5	19
10% to 20%	-5,213	-1,000	-0.3	-0.3	18
≥ 20%	-7,493	-1,106	-0.9	-0.9	13
Total	-3,594	-218	-0.4	-0.3	67

Table 2. County Comparison, BEBR vs. U.S. Census Bureau, April 1, 2024 Population Estimates, by Population Size and Population Growth Rate

Table 3. Subcounty	⁷ Comparison,	BEBR vs. U.S.	Census Bureau, Apri	il 1, 2024 Population Estimates
· · · · · · · · · · · · · · · · · · ·				

Subcounty Area	County	BEBR	USCB	BEBR	% BEBR
				vs. USCB	vs. USCB
Alachua city	Alachua	11,296	10,859	437	3.9
Archer city	Alachua	1,165	1,174	-9	-0.7
Gainesville city	Alachua	150,120	148,421	1,699	1.1
Hawthorne city	Alachua	1,485	1,526	-41	-2.7
High Springs city	Alachua	7,118	6,783	335	4.7
La Crosse town	Alachua	304	323	-19	-6.3
Micanopy town	Alachua	653	658	-5	-0.8
Newberry city	Alachua	9,096	8,265	831	9.1
Waldo city	Alachua	869	824	45	5.2
Unincorporated	Alachua	114,207	112,245	1,963	1.7
Glen St. Mary town	Baker	491	501	-10	-2.1
Macclenny city	Baker	8,113	8,143	-30	-0.4
Unincorporated	Baker	20,295	20,485	-190	-0.9
Callaway city	Вау	14,835	14,051	785	5.3
Lynn Haven city	Вау	20,469	21,634	-1,165	-5.7
Mexico Beach city	Вау	1,416	1,191	225	15.9
Panama City city	Вау	37,909	36,760	1,149	3.0
Panama City Beach city	Вау	19,549	19,850	-301	-1.5
Parker city	Вау	4,427	4,768	-341	-7.7
Springfield city	Вау	9,010	8,455	555	6.2
Unincorporated	Bay	88,497	91,185	-2,688	-3.0
Brooker town	Bradford	313	338	-25	-7.9
Hampton city	Bradford	483	496	-13	-2.7
Lawtey city	Bradford	658	680	-22	-3.3
Starke city	Bradford	5,893	5,958	-65	-1.1
Unincorporated	Bradford	19,988	20,532	-544	-2.7
Cape Canaveral city	Brevard	10,002	10,026	-24	-0.2
Cocoa city	Brevard	21,123	19,931	1,192	5.6
Cocoa Beach city	Brevard	11,349	11,400	-51	-0.5
Grant-Valkaria town	Brevard	5,441	5,565	-124	-2.3
Indialantic town	Brevard	3,009	3,120	-111	-3.7
Indian Harbour Beach city	Brevard	8,984	9,019	-35	-0.4
Malabar town	Brevard	3,118	3,164	-46	-1.5
Melbourne city	Brevard	87,846	87,520	326	0.4
Melbourne Beach town	Brevard	3,306	3,274	32	1.0
Melbourne Village town	Brevard	684	684	0	0.0
Palm Bay city	Brevard	140,199	140,538	-339	-0.2
Palm Shores town	Brevard	1,197	1,211	-14	-1.1
Rockledge city	Brevard	29,134	30,966	-1,832	-6.3
Satellite Beach city	Brevard	11,453	11,373	80	0.7
Titusville city	Brevard	50,547	49,886	661	1.3

Table 3. Subcounty Comparison, BEBR vs. U.S. Census Bureau, April 1, 2024 Population Estimates

				BEBR	% BEBR
Subcounty Area	County	BEBR	USCB	vs. USCB	vs. USCB
West Melbourne city	Brevard	30,443	30,848	-405	-1.3
Unincorporated	Brevard	235,868	236,991	-1,123	-0.5
Coconut Creek city	Broward	57,702	59,509	-1,807	-3.1
Cooper City city	Broward	35,024	35,414	-390	-1.1
Coral Springs city	Broward	135,191	140,027	-4,836	-3.6
Dania Beach city	Broward	33,746	32,949	797	2.4
Davie town	Broward	107,410	111,553	-4,143	-3.9
Deerfield Beach city	Broward	87,402	90,161	-2,759	-3.2
Fort Lauderdale city	Broward	189,583	189,949	-366	-0.2
Hallandale Beach city	Broward	41,771	42,879	-1,108	-2.7
Hillsboro Beach town	Broward	1,971	2,036	-65	-3.3
Hollywood city	Broward	155,038	158,556	-3,518	-2.3
Lauderdale-by-the-Sea town	Broward	6,181	6,344	-163	-2.6
Lauderdale Lakes city	Broward	36,659	37,193	-534	-1.5
Lauderhill city	Broward	74,751	76,345	-1,594	-2.1
Lazy Lake village	Broward	33	35	-2	-6.1
Lighthouse Point city	Broward	10,462	10,838	-376	-3.6
Margate city	Broward	58,544	60,434	-1,890	-3.2
Miramar city	Broward	139,500	142,721	-3,221	-2.3
North Lauderdale city	Broward	44,853	46,176	-1,323	-3.0
Oakland Park city	Broward	46,039	45,606	433	0.9
Parkland city	Broward	38,342	39,444	-1,102	-2.9
Pembroke Park town	Broward	6,105	6,516	-411	-6.7
Pembroke Pines city	Broward	170,892	178,168	-7,276	-4.3
Plantation city	Broward	98,431	100,156	-1,725	-1.8
Pompano Beach city	Broward	114,703	117,554	-2,851	-2.5
Sea Ranch Lakes village	Broward	535	572	-37	-7.0
Southwest Ranches town	Broward	7,796	7,801	-5	-0.1
Sunrise city	Broward	97,899	99,792	-1,893	-1.9
Tamarac city	Broward	73,130	74,826	-1,696	-2.3
Weston city	Broward	68,249	70,403	-2,154	-3.2
West Park city	Broward	15,218	15,585	-367	-2.4
Wilton Manors city	Broward	11,495	11,751	-256	-2.2
Unincorporated	Broward	17,233	17,508	-275	-1.6
Altha town	Calhoun	487	495	-8	-1.7
Blountstown city	Calhoun	2,262	2,271	-9	-0.4
Unincorporated	Calhoun	10,951	10,567	385	3.5
Punta Gorda city	Charlotte	20,443	20,422	21	0.1
Unincorporated	Charlotte	190,202	190,441	-239	-0.1
Crystal River city	Citrus	3,516	3,664	-148	-4.2
Inverness city	Citrus	7,922	7,882	40	0.5

Table 3. Subcounty Comparison, BEBR vs. U.S. Census Bureau, April 1, 2024 Population Estimates

Subcounty Area	County	BEBR	USCB	BEBR	% BEBR
	County	DEDIX	0300	vs. USCB	vs. USCB
Unincorporated	Citrus	154,713	157,793	-3,080	-2.0
Green Cove Springs city	Clay	10,270	10,103	167	1.6
Keystone Heights city	Clay	1,473	1,559	-86	-5.9
Orange Park town	Clay	9,171	9,015	156	1.7
Penney Farms town	Clay	835	836	-1	-0.2
Unincorporated	Clay	214,616	214,240	376	0.2
Everglades city	Collier	381	394	-13	-3.5
Marco Island city	Collier	16,288	16,528	-240	-1.5
Naples city	Collier	19,390	20,123	-733	-3.8
Unincorporated	Collier	372,322	377,646	-5,324	-1.4
Fort White town	Columbia	667	665	2	0.3
Lake City city	Columbia	12,494	12,743	-249	-2.0
Unincorporated	Columbia	58,994	60,406	-1,412	-2.4
Arcadia city	DeSoto	7,702	7,952	-250	-3.3
Unincorporated	DeSoto	27,785	28,675	-890	-3.2
Cross City town	Dixie	1,698	1,811	-113	-6.6
Horseshoe Beach town	Dixie	153	174	-21	-13.4
Unincorporated	Dixie	15,704	15,532	172	1.1
Atlantic Beach city	Duval	13,517	13,283	234	1.7
Baldwin town	Duval	1,426	1,383	43	3.0
Jacksonville city	Duval	1,016,103	1,005,742	10,361	1.0
Jacksonville Beach city	Duval	24,309	23,635	675	2.8
Neptune Beach city	Duval	7,238	7,036	202	2.8
Century town	Escambia	1,638	1,776	-138	-8.4
Pensacola city	Escambia	55,152	53,884	1,269	2.3
Unincorporated	Escambia	279,568	274,806	4,763	1.7
Beverly Beach town	Flagler	503	519	-16	-3.2
Bunnell city	Flagler	4,149	4,062	88	2.1
Flagler Beach city (pt.)	Flagler	5,550	5,489	62	1.1
Marineland town (pt.)	Flagler	12	8	4	33.3
Palm Coast city	Flagler	106,193	105,659	534	0.5
Unincorporated	Flagler	19,903	19,795	108	0.5
Apalachicola city	Franklin	2,470	2,451	19	0.8
Carrabelle city	Franklin	3,073	2,527	547	17.8
Unincorporated	Franklin	7,778	7,914	-136	-1.7
Chattahoochee city	Gadsden	2,974	3,050	-76	-2.6
Greensboro town	Gadsden	444	463	-19	-4.3
Gretna city	Gadsden	1,355	1,284	72	5.3
Havana town	Gadsden	1,797	1,756	42	2.3
Midway city	Gadsden	3,683	3,489	195	5.3
Quincy city	Gadsden	8,124	8,093	31	0.4

Subcounty Area	County	BEBR	USCB	BEBR	% BEBR
Subcounty Area	County	DEDR	USCB	vs. USCB	vs. USCB
Unincorporated	Gadsden	26,476	26,005	472	1.8
Bell town	Gilchrist	521	578	-57	-10.9
Fanning Springs city (pt.)	Gilchrist	613	532	81	13.2
Trenton city	Gilchrist	2,173	2,254	-81	-3.7
Unincorporated	Gilchrist	16,196	16,745	-549	-3.4
Moore Haven city	Glades	1,533	1,701	-168	-10.9
Unincorporated	Glades	11,282	11,358	-76	-0.7
Port St. Joe city	Gulf	3,912	3,837	76	1.9
Wewahitchka city	Gulf	2,292	2,188	105	4.6
Unincorporated	Gulf	10,743	9,822	921	8.6
Jasper city	Hamilton	4,008	3,406	603	15.0
Jennings town	Hamilton	721	771	-50	-6.9
White Springs town	Hamilton	731	760	-29	-4.0
Unincorporated	Hamilton	8,768	9,244	-476	-5.4
Bowling Green city	Hardee	2,462	2,452	10	0.4
Wauchula city	Hardee	4,905	4,978	-73	-1.5
Zolfo Springs town	Hardee	1,836	1,758	78	4.3
Unincorporated	Hardee	16,680	16,850	-170	-1.0
Clewiston city	Hendry	7,336	7,466	-130	-1.8
LaBelle city	Hendry	5,480	5,435	45	0.8
Unincorporated	Hendry	32,597	32,725	-128	-0.4
Brooksville city	Hernando	9,752	9,937	-185	-1.9
Unincorporated	Hernando	200,825	207,029	-6,204	-3.1
Avon Park city	Highlands	9,814	10,380	-566	-5.8
Lake Placid town	Highlands	2,453	2,553	-100	-4.1
Sebring city	Highlands	11,687	11,752	-65	-0.6
Unincorporated	Highlands	82,155	84,687	-2,532	-3.1
Plant City city	Hillsborough	42,141	42,571	-430	-1.0
Tampa city	Hillsborough	409,458	413,346	-3,888	-1.0
Temple Terrace city	Hillsborough	27,469	27,550	-81	-0.3
Unincorporated	Hillsborough	1,081,381	1,091,932	-10,551	-1.0
Bonifay city	Holmes	2,838	2,835	3	0.1
Esto town	Holmes	352	349	3	0.8
Noma town	Holmes	216	215	1	0.6
Ponce de Leon town	Holmes	511	518	-7	-1.3
Westville town	Holmes	269	268	1	0.5
Unincorporated	Holmes	15,873	15,638	235	1.5
Fellsmere city	Indian River	4,990	5,023	-33	-0.7
Indian River Shores town	Indian River	4,553	4,470	84	1.8
Orchid town	Indian River	548	546	2	0.4
Sebastian city	Indian River	26,907	27,054	-147	-0.5

Table 3. Subcounty Comparison, BEBR vs. U.S. Census Bureau, April 1, 2024 Population Estimates	Table 3. Subcounty Co	omparison, BEBR vs. l	U.S. Census Bureau, April	1, 2024 Population Estimates
--	-----------------------	-----------------------	---------------------------	------------------------------

Subcounty Area	County	BEBR	USCB	BEBR	% BEBR
	County	DEDK	USCB	vs. USCB	vs. USCB
Vero Beach city	Indian River	16,805	17,511	-706	-4.2
Unincorporated	Indian River	117,226	117,123	103	0.1
Alford town	Jackson	474	518	-44	-9.3
Bascom town	Jackson	82	93	-11	-12.8
Campbellton town	Jackson	197	203	-6	-2.8
Cottondale town	Jackson	823	877	-54	-6.6
Graceville city	Jackson	2,045	2,215	-170	-8.3
Grand Ridge town	Jackson	942	922	20	2.1
Greenwood town	Jackson	527	560	-33	-6.3
Jacob City city	Jackson	235	229	6	2.6
Malone town	Jackson	1,734	1,590	144	8.3
Marianna city	Jackson	7,132	7,828	-696	-9.8
Sneads town	Jackson	1,678	1,775	-97	-5.8
Unincorporated	Jackson	33,476	32,858	618	1.9
Monticello city	Jefferson	2,788	2,745	43	1.5
Unincorporated	Jefferson	12,879	13,082	-203	-1.6
Mayo town	Lafayette	1,081	1,086	-5	-0.5
Unincorporated	Lafayette	7,423	7,442	-19	-0.3
Astatula town	Lake	2,205	2,215	-10	-0.5
Clermont city	Lake	48,988	50,357	-1,369	-2.8
Eustis city	Lake	24,180	24,949	-769	-3.2
Fruitland Park city	Lake	8,634	8,935	-301	-3.5
Groveland city	Lake	23,697	24,387	-690	-2.9
Howey-in-the-Hills town	Lake	1,934	1,691	243	12.6
Lady Lake town	Lake	16,352	17,230	-878	-5.4
Leesburg city	Lake	33,344	36,340	-2,996	-9.0
Mascotte city	Lake	9,215	9,010	206	2.2
Minneola city	Lake	19,893	19,276	617	3.1
Montverde town	Lake	2,191	1,802	389	17.8
Mount Dora city	Lake	18,227	18,157	70	0.4
Tavares city	Lake	21,530	21,797	-267	-1.2
Umatilla city	Lake	3,885	3,960	-75	-1.9
Unincorporated	Lake	199,056	199,742	-686	-0.3
Bonita Springs city	Lee	56,066	57,063	-997	-1.8
Cape Coral city	Lee	220,236	231,524	-11,288	-5.1
Estero village	Lee	37,993	38,427	-434	-1.1
Fort Myers city	Lee	100,780	99,533	1,247	1.2
Fort Myers Beach town	Lee	3,665	5,313	-1,648	-45.0
Sanibel city	Lee	5,971	6,371	-400	-6.7
Unincorporated	Lee	402,305	418,545	-16,240	-4.0
Tallahassee city	Leon	202,203	204,733	-2,530	-1.3

Table 3. Subcounty Comparison, BEBR vs. U.S. Census Bureau, April 1, 2024 Population Estimates

Subcounty Area	County	BEBR	USCB	BEBR	% BEBR
	county	BEBR	0305	vs. USCB	vs. USCB
Unincorporated	Leon	99,994	95,389	4,605	4.6
Bronson town	Levy	1,156	1,257	-101	-8.8
Cedar Key city	Levy	684	735	-51	-7.4
Chiefland city	Levy	2,318	2,440	-122	-5.3
Fanning Springs city (pt.)	Levy	697	801	-104	-14.9
Inglis town	Levy	1,499	1,618	-119	-7.9
Otter Creek town	Levy	111	113	-2	-2.0
Williston city	Levy	3,205	3,377	-172	-5.4
Yankeetown town	Levy	575	632	-57	-9.9
Unincorporated	Levy	35,600	36,518	-918	-2.6
Bristol city	Liberty	961	939	22	2.3
Unincorporated	Liberty	7,055	6,970	85	1.2
Greenville town	Madison	754	774	-20	-2.7
Lee town	Madison	395	380	15	3.8
Madison city	Madison	2,880	2,995	-115	-4.0
Unincorporated	Madison	14,620	14,205	416	2.8
Anna Maria city	Manatee	957	1,016	-59	-6.1
Bradenton city	Manatee	57,474	58,013	-539	-0.9
Bradenton Beach city	Manatee	902	927	-25	-2.7
Holmes Beach city	Manatee	3,018	3,050	-32	-1.1
Longboat Key town (pt.)	Manatee	2,741	2,746	-5	-0.2
Palmetto city	Manatee	13,948	13,686	263	1.9
Unincorporated	Manatee	376,316	375,442	874	0.2
Belleview city	Marion	5,941	6,090	-149	-2.5
Dunnellon city	Marion	2,015	2,033	-18	-0.9
McIntosh town	Marion	470	527	-57	-12.0
Ocala city	Marion	69,556	69,896	-340	-0.5
Reddick town	Marion	465	511	-46	-9.8
Unincorporated	Marion	341,063	345,709	-4,646	-1.4
Indiantown village	Martin	6,700	6,799	-99	-1.5
Jupiter Island town	Martin	814	836	-22	-2.7
Ocean Breeze Park town	Martin	608	402	206	33.9
Sewall's Point town	Martin	2,057	2,073	-16	-0.8
Stuart city	Martin	20,191	19,558	633	3.1
Unincorporated	Martin	134,483	135,642	-1,159	-0.9
Aventura city	Miami-Dade	40,104	40,404	-300	-0.8
Bal Harbour village	Miami-Dade	3,010	3,090	-80	-2.7
Bay Harbor Islands town	Miami-Dade	5,793	5,920	-127	-2.2
Biscayne Park village	Miami-Dade	3,030	3,116	-86	-2.8
Coral Gables city	Miami-Dade	50,813	50,235	579	1.1
Cutler Bay town	Miami-Dade	45,026	45,679	-653	-1.5

Cub country Ange	Country			BEBR	% BEBR
Subcounty Area	County	BEBR	USCB	vs. USCB	vs. USCB
Doral city	Miami-Dade	82,175	83,211	-1,036	-1.3
El Portal village	Miami-Dade	2,236	1,975	261	11.7
Florida City city	Miami-Dade	17,173	13,116	4,057	23.6
Golden Beach town	Miami-Dade	981	1,027	-46	-4.6
Hialeah city	Miami-Dade	230,575	233,680	-3,105	-1.4
Hialeah Gardens city	Miami-Dade	22,303	23,250	-947	-4.2
Homestead city	Miami-Dade	84,014	85,430	-1,416	-1.7
Indian Creek village	Miami-Dade	89	88	1	1.1
Key Biscayne village	Miami-Dade	14,603	15,056	-453	-3.1
Medley town	Miami-Dade	1,050	1,097	-47	-4.5
Miami city	Miami-Dade	467,171	482,930	-15,759	-3.4
Miami Beach city	Miami-Dade	83,230	83,000	230	0.3
Miami Gardens city	Miami-Dade	115,364	115,761	-397	-0.3
Miami Lakes town	Miami-Dade	30,856	33,003	-2,147	-7.0
Miami Shores village	Miami-Dade	11,553	11,888	-335	-2.9
Miami Springs city	Miami-Dade	13,866	13,865	1	0.0
North Bay Village city	Miami-Dade	7,977	8,262	-285	-3.6
North Miami city	Miami-Dade	59,955	61,876	-1,921	-3.2
North Miami Beach city	Miami-Dade	43,575	45,291	-1,716	-3.9
Opa-locka city	Miami-Dade	16,560	16,460	100	0.6
Palmetto Bay village	Miami-Dade	25,091	25,316	-225	-0.9
Pinecrest village	Miami-Dade	18,304	18,898	-594	-3.2
South Miami city	Miami-Dade	12,018	13,022	-1,004	-8.4
Sunny Isles Beach city	Miami-Dade	22,788	22,831	-43	-0.2
Surfside town	Miami-Dade	5,401	5,702	-301	-5.6
Sweetwater city	Miami-Dade	21,393	21,245	148	0.7
Virginia Gardens village	Miami-Dade	2,374	2,352	22	0.9
West Miami city	Miami-Dade	7,257	7,228	29	0.4
Unincorporated	Miami-Dade	1,207,133	1,227,108	-19,975	-1.7
Islamorada, Village of Islands village	Monroe	7,342	7,022	320	4.4
Key Colony Beach city	Monroe	796	752	44	5.5
Key West city	Monroe	26,327	25,259	1,068	4.1
Layton city	Monroe	216	208	8	3.6
Marathon city	Monroe	9,920	10,014	-94	-1.0
Unincorporated	Monroe	39,546	37,752	1,794	4.5
Callahan town	Nassau	1,733	1,788	-55	-3.2
Fernandina Beach city	Nassau	13,648	13,669	-21	-0.2
Hilliard town	Nassau	3,114	3,072	42	1.4
Unincorporated	Nassau	85,495	85,149	347	0.4
Cinco Bayou town	Okaloosa	466	469	-3	-0.7
Crestview city	Okaloosa	29,872	30,409	-537	-1.8

Culture Area	Country	DEDD		BEBR	% BEBR
Subcounty Area	County	BEBR	USCB	vs. USCB	vs. USCB
Destin city	Okaloosa	14,608	14,064	545	3.7
Fort Walton Beach city	Okaloosa	21,090	21,155	-65	-0.3
Laurel Hill city	Okaloosa	685	608	78	11.3
Mary Esther city	Okaloosa	4,493	4,082	411	9.2
Niceville city	Okaloosa	16,594	17,596	-1,002	-6.0
Shalimar town	Okaloosa	756	759	-3	-0.4
Valparaiso city	Okaloosa	5,050	4,864	186	3.7
Unincorporated	Okaloosa	128,192	126,264	1,928	1.5
Okeechobee city	Okeechobee	5,452	5,703	-251	-4.6
Unincorporated	Okeechobee	34,778	36,474	-1,696	-4.9
Apopka city	Orange	61,820	62,165	-345	-0.6
Bay Lake city	Orange	14	23	-9	-62.5
Belle Isle city	Orange	7,293	7,700	-407	-5.6
Eatonville town	Orange	2,464	2,348	117	4.7
Edgewood city	Orange	2,553	2,852	-299	-11.7
Lake Buena Vista city	Orange	21	25	-4	-19.1
Maitland city	Orange	20,042	19,738	305	1.5
Oakland town	Orange	5,402	3,775	1,627	30.1
Ocoee city	Orange	51,186	51,017	170	0.3
Orlando city	Orange	335,066	332,988	2,078	0.6
Windermere town	Orange	3,044	3,206	-162	-5.3
Winter Garden city	Orange	51,495	48,657	2,839	5.5
Winter Park city	Orange	30,565	30,757	-192	-0.6
Unincorporated	Orange	940,603	960,303	-19,700	-2.1
Kissimmee city	Osceola	85,141	84,324	817	1.0
St. Cloud city	Osceola	65,974	70,251	-4,277	-6.5
Unincorporated	Osceola	300,116	308,280	-8,164	-2.7
Atlantis city	Palm Beach	2,135	2,156	-21	-1.0
Belle Glade city	Palm Beach	17,468	17,300	168	1.0
Boca Raton city	Palm Beach	100,560	102,034	-1,474	-1.5
Boynton Beach city	Palm Beach	82,393	82,912	-519	-0.6
Briny Breezes town	Palm Beach	498	530	-32	-6.4
Cloud Lake town	Palm Beach	137	141	-4	-2.7
Delray Beach city	Palm Beach	68,096	69,754	-1,658	-2.4
Glen Ridge town	Palm Beach	214	218	-4	-2.0
Golf village	Palm Beach	287	272	15	5.2
Greenacres city	Palm Beach	45,439	45,095	344	0.8
Gulf Stream town	Palm Beach	956	991	-35	-3.7
Haverhill town	Palm Beach	2,188	2,221	-33	-1.5
Highland Beach town	Palm Beach	4,287	4,360	-73	-1.7
Hypoluxo town	Palm Beach	2,672	2,923	-251	-9.4

Subcounty Area	County	BEBR	USCB	BEBR	% BEBR
Subcounty Area	County	DEDK	0300	vs. USCB	vs. USCB
Juno Beach town	Palm Beach	3,871	3,958	-87	-2.2
Jupiter town	Palm Beach	61,215	62,830	-1,615	-2.6
Jupiter Inlet Colony town	Palm Beach	412	451	-39	-9.3
Lake Clarke Shores town	Palm Beach	3,545	3,622	-77	-2.2
Lake Park town	Palm Beach	9,014	9,172	-158	-1.8
Lake Worth Beach city	Palm Beach	43,472	44,317	-845	-1.9
Lantana town	Palm Beach	12,239	12,521	-282	-2.3
Loxahatchee Groves town	Palm Beach	3,374	3,546	-172	-5.1
Manalapan town	Palm Beach	416	440	-24	-5.7
Mangonia Park town	Palm Beach	2,511	2,638	-127	-5.1
North Palm Beach village	Palm Beach	13,101	13,395	-294	-2.2
Ocean Ridge town	Palm Beach	1,810	1,884	-74	-4.1
Pahokee city	Palm Beach	5,666	5,779	-113	-2.0
Palm Beach town	Palm Beach	9,212	9,472	-260	-2.8
Palm Beach Gardens city	Palm Beach	62,469	62,991	-522	-0.8
Palm Beach Shores town	Palm Beach	1,283	1,357	-74	-5.7
Palm Springs village	Palm Beach	27,312	28,300	-988	-3.6
Riviera Beach city	Palm Beach	39,390	39,534	-144	-0.4
Royal Palm Beach village	Palm Beach	40,430	41,617	-1,187	-2.9
South Bay city	Palm Beach	4,984	5,156	-172	-3.5
South Palm Beach town	Palm Beach	1,465	1,488	-23	-1.6
Tequesta village	Palm Beach	6,093	6,272	-179	-2.9
Wellington village	Palm Beach	61,794	63,096	-1,302	-2.1
Westlake	Palm Beach	6,419	7,266	-847	-13.2
West Palm Beach city	Palm Beach	125,401	127,312	-1,911	-1.5
Unincorporated	Palm Beach	671,677	686,595	-14,918	-2.2
Dade City city	Pasco	9,382	9,432	-50	-0.5
New Port Richey city	Pasco	17,270	18,050	-780	-4.5
Port Richey city	Pasco	3,251	3,604	-353	-10.9
St. Leo town	Pasco	2,282	2,472	-190	-8.3
San Antonio city	Pasco	1,403	1,556	-153	-10.9
Zephyrhills city	Pasco	19,666	21,980	-2,314	-11.8
Unincorporated	Pasco	579,775	596,255	-16,480	-2.8
Belleair town	Pinellas	4,310	4,592	-282	-6.6
Belleair Beach city	Pinellas	1,633	1,618	15	0.9
Belleair Bluffs city	Pinellas	2,312	2,288	24	1.0
Belleair Shore town	Pinellas	70	76	-6	-8.9
Clearwater city	Pinellas	118,463	116,997	1,466	1.2
Dunedin city	Pinellas	35,606	35,984	-378	-1.1
Gulfport city	Pinellas	11,757	11,667	90	0.8
Indian Rocks Beach city	Pinellas	3,702	3,643	59	1.6

		BEBR	USCB	BEBR	% BEBR
Subcounty Area	County	DEDK	USCB	vs. USCB	vs. USCB
Indian Shores town	Pinellas	1,206	1,192	14	1.2
Kenneth City town	Pinellas	4,943	4,976	-33	-0.7
Largo city	Pinellas	83,950	82,442	1,508	1.8
Madeira Beach city	Pinellas	4,006	4,016	-10	-0.3
North Redington Beach town	Pinellas	1,472	1,478	-6	-0.4
Oldsmar city	Pinellas	14,888	14,852	37	0.3
Pinellas Park city	Pinellas	54,952	53,575	1,378	2.5
Redington Beach town	Pinellas	1,346	1,383	-37	-2.7
Redington Shores town	Pinellas	2,154	2,169	-15	-0.7
Safety Harbor city	Pinellas	16,762	16,996	-234	-1.4
St. Pete Beach city	Pinellas	8,765	8,743	22	0.3
St. Petersburg city	Pinellas	267,031	266,597	434	0.2
Seminole city	Pinellas	19,338	19,393	-55	-0.3
South Pasadena city	Pinellas	5,403	5,289	114	2.1
Tarpon Springs city	Pinellas	25,949	26,134	-185	-0.7
Treasure Island city	Pinellas	6,510	6,534	-24	-0.4
Unincorporated	Pinellas	274,690	273,596	1,094	0.4
Auburndale city	Polk	20,186	20,530	-344	-1.7
Bartow city	Polk	20,502	21,754	-1,252	-6.1
Davenport city	Polk	13,630	16,363	-2,733	-20.1
Dundee town	Polk	5,762	6,230	-468	-8.1
Eagle Lake city	Polk	4,902	5,229	-327	-6.7
Fort Meade city	Polk	5,219	5,334	-115	-2.2
Frostproof city	Polk	3,032	3,458	-426	-14.0
Haines City city	Polk	39,514	40,939	-1,425	-3.6
Highland Park village	Polk	245	283	-38	-15.6
Hillcrest Heights town	Polk	234	281	-47	-19.9
Lake Alfred city	Polk	8,037	8,329	-292	-3.6
Lake Hamilton town	Polk	1,702	2,008	-306	-18.0
Lakeland city	Polk	123,760	124,504	-744	-0.6
Lake Wales city	Polk	17,558	17,551	8	0.0
Mulberry city	Polk	4,483	4,460	23	0.5
Polk City town	Polk	3,049	3,071	-22	-0.7
Winter Haven city	Polk	57,923	59,351	-1,428	-2.5
Unincorporated	Polk	496,352	506,028	-9,676	-2.0
Crescent City city	Putnam	1,702	1,719	-17	-1.0
Interlachen town	Putnam	1,495	1,502	-7	-0.5
Palatka city	Putnam	10,503	10,838	-335	-3.2
Pomona Park town	Putnam	801	821	-20	-2.5
Welaka town	Putnam	815	760	56	6.8
Unincorporated	Putnam	60,822	61,389	-567	-0.9

Table 3. Subcounty Comparison, BEBR vs. U.S. Census Bureau, April 1, 2024 Population Estimates

Subcounty Area	County	BEBR	USCB	BEBR	% BEBR
	County	DEDR	USCB	vs. USCB	vs. USCB
Marineland town (pt.)	St. Johns	3	1	2	66.7
St. Augustine city	St. Johns	15,684	15,915	-231	-1.5
St. Augustine Beach city	St. Johns	6,972	6,810	162	2.3
Unincorporated	St. Johns	308,820	308,848	-28	0.0
Fort Pierce city	St. Lucie	50,823	50,552	272	0.5
Port St. Lucie city	St. Lucie	253,959	255,605	-1,646	-0.7
St. Lucie Village town	St. Lucie	624	615	10	1.5
Unincorporated	St. Lucie	80,340	80,278	62	0.1
Gulf Breeze city	Santa Rosa	6,335	6,924	-589	-9.3
Jay town	Santa Rosa	526	580	-54	-10.3
Milton city	Santa Rosa	10,300	11,132	-832	-8.1
Unincorporated	Santa Rosa	190,822	187,996	2,826	1.5
Longboat Key town (pt.)	Sarasota	4,791	4,738	54	1.1
North Port city	Sarasota	92,399	92,019	380	0.4
Sarasota city	Sarasota	57,943	57,838	105	0.2
Venice city	Sarasota	28,967	29,508	-541	-1.9
Unincorporated	Sarasota	294,927	291,370	3,557	1.2
Altamonte Springs city	Seminole	47,313	46,879	435	0.9
Casselberry city	Seminole	30,120	31,463	-1,343	-4.5
Lake Mary city	Seminole	17,423	16,966	458	2.6
Longwood city	Seminole	16,617	17,056	-439	-2.6
Oviedo city	Seminole	41,934	41,841	94	0.2
Sanford city	Seminole	67,897	66,698	1,199	1.8
Winter Springs city	Seminole	39,131	39,710	-579	-1.5
Unincorporated	Seminole	232,847	232,656	191	0.1
Bushnell city	Sumter	3,760	3,199	561	14.9
Center Hill city	Sumter	893	1,050	-157	-17.6
Coleman city	Sumter	627	785	-158	-25.2
Webster city	Sumter	948	960	-12	-1.2
Wildwood city	Sumter	31,337	18,938	12,399	39.6
Unincorporated	Sumter	119,178	129,128	-9,950	-8.4
Branford town	Suwannee	758	769	-11	-1.4
Live Oak city	Suwannee	6,962	7,176	-214	-3.1
Unincorporated	Suwannee	38,799	39,241	-442	-1.1
Perry city	Taylor	7,062	7,306	-244	-3.5
Unincorporated	Taylor	14,740	14,518	222	1.5
Lake Butler city	Union	1,979	1,990	-11	-0.5
Raiford town	Union	236	225	12	4.9
Worthington Springs town	Union	451	381	70	15.5
Unincorporated	Union	13,434	13,207	228	1.7
Daytona Beach city	Volusia	84,891	85,195	-304	-0.4

Table 3. Subcounty Compa	rison, BEBR vs. U.S. Census Bu	reau, April 1, 2024 Population Estimates

Subcounty Area	County	BEBR	USCB	BEBR	% BEBR
Subcounty Area	County			vs. USCB	vs. USCB
Daytona Beach Shores city	Volusia	5,251	5,221	30	0.6
DeBary city	Volusia	24,009	23,407	602	2.5
DeLand city	Volusia	43,185	44,993	-1,808	-4.2
Deltona city	Volusia	98,312	100,174	-1,862	-1.9
Edgewater city	Volusia	24,981	24,189	792	3.2
Flagler Beach city (pt.)	Volusia	72	78	-6	-8.0
Holly Hill city	Volusia	13,008	13,173	-165	-1.3
Lake Helen city	Volusia	3,034	2,984	50	1.7
New Smyrna Beach city	Volusia	32,542	33,067	-525	-1.6
Oak Hill city	Volusia	2,103	2,164	-61	-2.9
Orange City city	Volusia	14,866	15,209	-343	-2.3
Ormond Beach city	Volusia	45,140	44,561	579	1.3
Pierson town	Volusia	1,561	1,563	-2	-0.1
Ponce Inlet town	Volusia	3,428	3,481	-53	-1.5
Port Orange city	Volusia	65,670	66,483	-813	-1.2
South Daytona city	Volusia	13,493	13,890	-397	-2.9
Unincorporated	Volusia	119,097	120,405	-1,308	-1.1
St. Marks city	Wakulla	331	311	21	6.2
Sopchoppy city	Wakulla	485	473	12	2.4
Unincorporated	Wakulla	36,497	36,171	327	0.9
DeFuniak Springs city	Walton	6,216	6,985	-769	-12.4
Freeport city	Walton	9,857	7,166	2,691	27.3
Paxton town	Walton	580	662	-82	-14.1
Unincorporated	Walton	71,075	74,021	-2,946	-4.1
Caryville town	Washington	279	317	-38	-13.7
Chipley city	Washington	3,613	3,735	-122	-3.4
Ebro town	Washington	256	246	11	4.1
Vernon city	Washington	772	743	30	3.8
Wausau town	Washington	353	389	-36	-10.3
Unincorporated	Washington	21,295	20,834	461	2.2

Deputation Size in 2020	BEBR v	s. USCB	% BEBR	N	
Population Size in 2020	Mean	Median	Mean	Median	IN
< 2,500	-20	-11	-2.1	-2.1	142
2,500 to 9,999	-56	-73	-1.2	-1.5	110
10,000 to 49,999	-117	-214	-0.5	-1.0	134
≥ 50,000	-2,275	-1,159	-1.1	-1.0	95
Total	-501	-47	-1.3	-1.3	481
Population Growth Rate 2010–2020	BEBR vs. USCB		% BEBR	N	
	Mean	Median	Mean	Median	IN
< -2.5%	14	-9	-2.5	-1.3	95
-2.5% to 5%	-168	-48	-1.9	-1.5	106
5% to 15%	-716	-80	-1.3	-1.1	160
≥ 15%	-923	-239	-0.3	-1.2	119
Total	-501	-47	-1.3	-1.3	480

Table 4. Subcounty Comparison, BEBR vs. U.S. Census Bureau, April 1, 2024 Population Estimates, by Population Size and Population Growth Rate

	Florida Depart	ment of Health [Data
Veer	Diretho	Deethe	Natural
Year	Births	Deaths	Change
2000	204,030	162,839	41,191
2001	205,800	167,181	38,619
2002	205,580	167,702	37,878
2003	212,243	168,459	43,784
2004	218,045	168,364	49,681
2005	226,219	170,300	55,919
2006	237,166	169,365	67,801
2007	239,120	167,708	71,412
2008	231,417	170,473	60,944
2009	221,391	169,853	51,538
2010	214,519	172,509	42,010
2011	213,237	172,856	40,381
2012	212,954	175,849	37,105
2013	215,194	180,014	35,180
2014	219,905	185,038	34,867
2015	224,273	191,488	32,785
2016	225,018	197,236	27,782
2017	223,579	203,353	20,226
2018	221,508	205,461	16,047
2019	220,010	206,975	13,035
2020	209,645	239,381	-29,736
2021	216,189	261,246	-45,057
2022	224,403	238,953	-14,550
2023	221,413	229,045	-7,632
2024 ¹	223,809	228,492	-4,683
2025 ²	103,423	106,759	-3,336
¹ Provisio	onal data as of Ju	une 25, 2025	
² Provisio	onal data as of J	une 25, 2025	

	ACS	S PUMS 1-Year E	stimates	
Year	De	omestic Migratio	วท	Foreign
Tear	In	Out	Net	In-Migration
2000				
2001				
2002				
2003				
2004				
2005	628,583	442,778	185,805	145,899
2006	601,236	540,324	60,912	163,278
2007	489,800	543,510	-53,710	144,832
2008	497,603	519,012	-21,409	153,944
2009	460,078	447,569	12,509	128,374
2010	480,166	427,591	52,575	150,035
2011	501,905	425,069	76,836	170,684
2012	532,886	424,735	108,151	162,556
2013	529,351	428,866	100,485	170,932
2014	546,996	440,175	106,821	208,243
2015	583,064	441,040	142,024	216,745
2016	595,807	419,120	176,687	238,528
2017	566,362	431,712	134,650	248,383
2018	589,192	478,716	110,476	219,415
2019	607,818	472,081	135,737	205,843
2020 ¹	643,934	443,696	200,238	159,201
2021	675,855	467,652	208,203	134,354
2022	735,644	497,168	238,476	265,735
2023	640,511	503,761	136,750	295,534
¹ From 2	020 ACS 1-Year I	Experimental Da	ita Release	

Census Bureau Vintage 2024 Estimates Components of Change												
From	То	Population	Births	Deethe	Natural		Net Migration					
FIOIII	10	Change	BILLIS	Deaths	Change	Domestic	International	Total	Residual			
4/2020	7/2020	53,843	50,294	56,387	-6,093	62,600	2,842	65,442	-5,506			
7/2020	7/2021	239,914	207,942	250,412	-42,470	246,571	46,853	293,424	-11,040			
7/2021	7/2022	547,363	221,941	260,497	-38,556	314,467	255,915	570,382	15,537			
7/2022	7/2023	525,556	224,041	231,613	-7,572	185,067	342,211	527,278	5,850			
7/2023	7/2024	467,347	220,659	227,980	-7,321	64,017	411,322	475,339	-671			

	Census Bureau Vintage 2023 Estimates Components of Change												
From To	То	Population	Births	Deaths	Natural		Net Migration						
TIOIII	Change	Dirtiis	Deaths	Increase	Domestic	International Total		Residual					
4/2020	7/2020	53,083	50,294	56,383	-6,089	61,782	2,840	64,622	-5,450				
7/2020	7/2021	239,409	207,942	250,389	-42,447	244,619	46,865	291,484	-9,628				
7/2021	7/2022	414,813	222,003	260,220	-38,217	317,923	121,233	439,156	13,874				
7/2022	7/2023	365,205	223,578	231,181	-7,603	194,438	178,432	372,870	-62				

	Census Bureau Vintage 2024 vs. 2023 Estimates Components of Change												
From	То	Population	Births	Deaths	Natural		Net Migration	Net Migration					
110111		Change	Birtiis	Deaths	Increase	Domestic	International	Total	Residual				
4/2020	7/2020	760	0	4	-4	818	2	820	-56				
7/2020	7/2021	505	0	23	-23	1,952	-12	1,940	-1,412				
7/2021	7/2022	132,550	-62	277	-339	-3,456	134,682	131,226	1,663				
7/2022	7/2023	160,351	463	432	31	-9,371	163,779	154,408	5,912				

State Indicators

	1 2 3 4		3	4	5	6а	6b	6c	6	7	8
Year	BEBR	Census	Electric	Homestead	Total	Public School	Private School	Home	Total School	Building	Housing
	Estimates	Estimates	Customers	Exemptions	Employment	Enrollment	Enrollment	Education	Enrollment	Permits	Units
2006	18,154,475	18,166,990	8,323,582	4,405,083	8,703,000	2,617,215	300,766	55,822	2,973,803	292,740	8,622,831
2007	18,446,768	18,367,842	8,523,878	4,504,537	8,918,000	2,606,337	290,385	56,650	2,953,372	233,866	8,817,298
2008	18,613,905	18,527,305	8,577,402	4,550,813	8,831,000	2,583,087	279,873	60,913	2,923,873	131,957	8,913,044
2009	18,687,425	18,652,644	8,552,847	4,521,988	8,354,000	2,583,403	271,027	62,567	2,916,997	74,337	8,967,149
2010	18,801,332	18,842,405	8,550,255	4,491,427	8,166,000	2,590,602	264,349	69,281	2,924,232	50,963	8,997,260
2011	18,949,860	19,036,879	8,602,234	4,417,629	8,295,000	2,613,043	270,551	72,408	2,956,002	41,244	9,031,561
2012	19,134,956	19,268,256	8,660,373	4,380,574	8,454,000	2,636,328	273,797	75,801	2,985,926	43,016	9,069,294
2013	19,337,590	19,502,928	8,728,597	4,333,692	8,619,000	2,664,329	283,100	77,054	3,024,483	55,329	9,128,802
2014	19,585,096	19,790,139	8,832,403	4,302,818	8,830,000	2,698,331	288,084	84,096	3,070,511	81,840	9,209,527
2015	19,879,230	20,140,379	8,966,225	4,306,744	9,008,000	2,732,112	300,244	83,359	3,115,715	91,389	9,287,645
2016	20,201,450	20,533,473	9,094,516	4,366,586	9,248,000	2,756,658	322,616	87,462	3,166,736	100,436	9,390,951
2017	20,524,865	20,868,335	9,221,276	4,444,699	9,496,000	2,771,839	324,837	89,817	3,186,493	123,446	9,500,755
2018	20,854,945	21,131,181	9,343,439	4,536,884	9,675,000	2,782,696	335,494	97,261	3,215,451	132,831	9,616,467
2019	21,189,849	21,353,320	9,476,022	4,641,236	9,842,000	2,793,379	352,821	106,115	3,252,315	142,419	9,754,082
2020	21,538,187	21,592,035	9,634,973	4,747,579	9,733,000	2,741,281	331,572	143,431	3,216,284	155,030	9,900,384
2021	21,898,945	21,831,949	9,805,328	4,851,475	9,613,000	2,774,126	374,962	152,109	3,301,197	177,126	10,051,531
2022	22,276,132	22,379,312	9,995,419	4,942,449	10,275,000	2,807,199	397,957	154,289	3,359,445	202,074	10,252,120
2023	22,634,867	22,904,868	10,139,559	5,042,269	10,647,000	2,806,576	416,942	155,532	3,379,050	205,463	10,448,447
2024	23,014,551	23,372,215	10,332,652	5,136,663	10,777,000	2,798,157	-	-	-	210,189	10,629,918
2025	-	-	-	-	10,795,000	-	-	-	-	198,529	-
2006–07	1.6	1.1	2.4	2.3	2.5	-0.4	-3.5	1.5	-0.7	-20.1	2.3
2007–08	0.9	0.9	0.6	1.0	-1.0	-0.9	-3.6	7.5	-1.0	-43.6	1.1
2008–09	0.4	0.7	-0.3	-0.6	-5.4	0.0	-3.2	2.7	-0.2	-43.7	0.6
2009–10	0.6	1.0	0.0	-0.7	-2.3	0.3	-2.5	10.7	0.3	-31.4	0.3
2010–11	0.8	1.0	0.6	-1.6	1.6	0.9	2.4	4.5	1.1	-19.1	0.4
2011–12	1.0	1.2	0.7	-0.8	1.9	0.9	1.2	4.7	1.0	4.3	0.4
2012–13	1.1	1.2	0.8	-1.1	2.0	1.1	3.4	1.7	1.3	28.6	0.7
2013–14	1.3	1.5	1.2	-0.7	2.5	1.3	1.8	9.1	1.5	47.9	0.9
2014–15	1.5	1.8	1.5	0.1	2.0	1.3	4.2	-0.9	1.5	11.7	0.9
2015–16	1.6	2.0	1.4	1.4	2.7	0.9	7.5	4.9	1.6	9.9	1.1
2016–17	1.6	1.6	1.4	1.8	2.7	0.6	0.7	2.7	0.6	22.9	1.2
2017–18	1.6	1.3	1.3	2.1	1.9	0.4	3.3	8.3	0.9	7.6	1.2
2018–19	1.6	1.1	1.4	2.3	1.7	0.4	5.2	9.1	1.2	7.2	1.4
2019–20	1.6	1.1	1.7	2.3	-1.1	-1.9	-6.0	35.2	-1.1	8.9	1.5
2020–21	1.7	1.1	1.8	2.2	-1.2	1.2	13.1	6.1	2.6	14.3	1.5
2021–22	1.7	2.5	1.9	1.9	6.9	1.2	6.1	1.4	1.8	14.1	2.0
2022-23	1.6	2.4	1.4	2.0	3.6	0.0	4.8	0.8	0.6	1.7	1.9
2023-24	1.7	2.0	1.9	1.9	1.2	-0.3	-	-	-	2.3	1.7
2024-25	-	-	-	-	0.2	-	-	-	-	-5.6	-

State Indicators

- 1 BEBR estimate April 1st (2010 and 2020 are Census counts; 2006–2009 and 2011–2019 are revised intercensal estimates)
- 2 Census estimate July 1st (2010 and 2020 are July 1st estimates, not April 1st decennial census counts; 2006–2009 and 2011–2019 are revised intercensal estimates)
- 3 Active residential electric customers March 31st
- 4 Florida Property Valuations and Tax Data Book (DOR) January 1st of each year
- 5 Florida Department of Economic Opportunity Local Area Unemployment Statistics Employment, March (seasonally adjusted)
- 6a Florida Department of Education Fall school enrollment, K-12 (Public Schools)
- 6b Florida Department of Education Fall school enrollment, K-12 (Private Schools) (Fall 2023 FLDOE preliminary unpublished data)
- 6c Florida Department of Education Fall school enrollment, K-12 (Home education)
- 7 US Department of Commerce Permits issued prior calendar year for single-family units, two years prior for multifamily units, no lag for mobile home units and demolitions
- 8 Census estimate July 1st (2010 and 2020 are July 1st estimates, not April 1st decennial census counts; 2006–2009 and 2011–2019 are revised intercensal estimates)

	Florida Power & Light / Duke / Tampa															
									tomers Count	•						
Month	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Jan	6,075,338	6,114,800	6,153,018	6,205,065	6,270,238	6,363,486	6,456,978	6,547,244	6,630,223	6,729,265	6,833,598	6,945,905	7,073,632	7,168,755	7,304,594	7,442,415
Feb	6,088,124	6,125,236	6,162,987	6,213,469	6,281,626	6,374,364	6,466,859	6,556,887	6,639,054	6,737,252	6,845,039	6,957,631	7,084,298	7,176,183	7,320,485	7,452,490
Mar	6,095,387	6,133,172	6,173,963	6,223,110	6,292,274	6,385,291	6,475,704	6,567,601	6,649,316	6,747,890	6,854,683	6,968,724	7,095,264	7,187,808	7,336,771	7,465,591
Apr	6,097,285	6,135,013	6,176,295	6,227,619	6,296,958	6,389,911	6,481,568	6,574,156	6,657,054	6,755,363	6,863,721	6,983,053	7,101,715	7,205,581	7,346,748	7,474,080
May	6,098,698	6,135,403	6,176,849	6,230,142	6,301,340	6,394,074	6,487,340	6,580,549	6,664,514	6,764,086	6,873,591	6,994,277	7,111,574	7,209,237	7,359,826	7,484,233
Jun	6,098,630	6,133,784	6,176,605	6,233,525	6,306,123	6,400,283	6,492,386	6,586,772	6,673,346	6,771,940	6,886,387	7,004,090	7,119,431	7,215,254	7,373,745	
Jul	6,100,075	6,133,723	6,179,082	6,237,160	6,311,184	6,405,875	6,499,110	6,593,362	6,680,257	6,781,275	6,896,281	7,013,695	7,125,159	7,224,600	7,386,336	
Aug	6,103,396	6,134,285	6,181,227	6,240,701	6,316,939	6,412,633	6,506,967	6,599,938	6,688,451	6,789,536	6,907,948	7,025,429	7,134,966	7,237,564	7,398,620	
Sep	6,100,844	6,130,696	6,181,311	6,244,867	6,324,059	6,418,696	6,512,205	6,599,118	6,696,351	6,796,024	6,916,259	7,033,671	7,142,697	7,247,838	7,409,944	
Oct	6,100,578	6,132,910	6,183,906	6,249,875	6,332,472	6,426,130	6,518,057	6,605,549	6,705,219	6,805,023	6,925,205	7,043,426	7,148,230	7,262,763	7,417,772	
Nov	6,103,676	6,136,891	6,189,052	6,255,241	6,342,776	6,437,455	6,526,768	6,613,973	6,712,550	6,813,770	6,928,049	7,052,115	7,155,642	7,276,108	7,424,215	
Dec	6,107,340	6,143,693	6,195,340	6,259,795	6,353,045	6,448,489	6,537,275	6,621,356	6,717,374	6,823,824	6,936,898	7,063,669	7,163,556	7,288,471	7,431,672	
Month																
	2009–10	2010-11	2011-12	2012-13	2013-14	2014–15	2015-16	2016–17	2017–18	2018–19	2019–20	2020-21	2021-22	2022-23	2023-24	2024–25
Jan	7,425	39,462	38,218	52,047	65,173	93,247	93,492	90,266	82,980	99,041	104,333	112,307	127,727	95,123	135,839	137,821
Feb	12,361	37,112	37,751	50,481	68,157	92,738	92,495	90,028	82,167	98,198	107,787	112,592	126,667	91,885	144,302	132,005
Mar	18,555	37,785	40,791	49,147	69,164	93,017	90,413	91,896	81,715	98,574	106,793	114,041	126,540	92,544	148,963	128,820
Apr	23,540	37,727	41,282	51,325	69,339	92,952	91,658	92,588	82,897	98,309	108,358	119,332	118,662	103,866	141,167	127,332
May	30,077	36,705	41,447	53,293	71,198	92,734	93,265	93,209	83,964	99,573	109,505	120,686	117,297	97,663	150,589	124,407
Jun	31,407	35,154	42,821	56,920	72,597	94,161	92,102	94,386	86,574	98,595	114,446	117,704	115,341	95,823	158,491	
Jul	33,358	33,648	45,359	58,077	74,025	94,691	93,234	94,252	86,896	101,017	115,006	117,414	111,464	99,441	161,736	
Aug	37,560	30,889	46,941	59,475	76,238	95,694	94,334	92,971	88,513	101,085	118,412	117,480	109,537	102,598	161,056	
Sep	35,789	29,852	50,615	63,556	79,192	94,637	93,508	86,914	97,233	99,673	120,235	117,411	109,026	105,141	162,106	
Oct	38,220	32,332	50,996	65,969	82,597	93,658	91,927	87,492	99,670	99,804	120,182	118,221	104,804	114,533	155,009	
Nov	35,973	33,215	52,161	66,189	87,535	94,679	89,313	87,205	98,577	101,219	114,280	124,066	103,527	120,466	148,107	
Dec	38,173	36,353	51,647	64,455	93,250	95,444	88,786	84,081	96,018	106,451	113,074	126,771	99,887	124,915	143,201	
Month	2009–10	2010-11	2011-12	2012-13	2013-14	2014–15	Year-to-1 2015–16	2016–17	Electric Custom 2017–18	1ers (in %) 2018–19	2019–20	2020-21	2021-22	2022-23	2023-24	2024–25
lan																
Jan Fob	0.12 0.20	0.65 0.61	0.63 0.62	0.85 0.82	1.05 1.10	1.49 1.48	1.47 1.45	1.40	1.27	1.49 1.48	1.55 1.60	1.64 1.64	1.84	1.34 1.30	1.89 2.01	1.89 1.80
Feb Mar	0.20 0.31	0.61 0.62	0.62 0.67	0.82 0.80	1.10 1.11	1.48 1.48	1.45 1.42	1.39 1.42	1.25 1.24	1.48 1.48	1.60 1.58	1.64 1.66	1.82 1.82	1.30 1.30	2.01 2.07	1.80 1.76
Apr	0.31	0.62	0.67	0.80	1.11	1.48 1.48	1.42	1.42	1.24	1.48 1.48	1.58	1.66	1.82	1.30	1.96	1.76
Apr May	0.39	0.62	0.67	0.83	1.11	1.48	1.43	1.43	1.26	1.48	1.60	1.74	1.70	1.46	2.09	1.73
Jun	0.50	0.58	0.88	0.86	1.14	1.47	1.46	1.44	1.28	1.49	1.62	1.76	1.65	1.37	2.09	1.05
Jul	0.52	0.58	0.70	0.92	1.10	1.49	1.44	1.45	1.31	1.48	1.69	1.71	1.65	1.35	2.20	
Aug	0.55	0.55	0.74	0.94	1.19	1.50	1.40	1.43	1.32	1.51	1.70	1.70	1.59	1.40	2.24	
Sep	0.59	0.31	0.83	1.03	1.22	1.51	1.47	1.43	1.34	1.49	1.74	1.70	1.55	1.44	2.23	
Oct	0.63	0.49	0.83	1.03	1.27	1.30	1.40	1.33	1.47	1.49	1.77	1.70	1.35	1.47	2.24	
Nov	0.59	0.53	0.85	1.07	1.40	1.40	1.43	1.34	1.49	1.49	1.68	1.71	1.49	1.68	2.13	
Dec	0.63	0.60	0.83	1.07	1.40	1.49	1.33	1.34	1.45	1.51	1.66	1.73	1.47	1.74	1.96	
DCC	0.00	0.00	0.04	1.04	1.43	1.00	1.00	1.23	1.40	1.50	1.00	1.00	1.41	1./4	1.00	

1							AI	Companies (Ma	arch)						
								ctric Customers							
Month	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Jan															
Feb															
Mar	8,550,255	8,602,234	8,660,373	8,728,597	8,832,403	8,966,225	9,094,516	9,221,276	9,343,439	9,476,022	9,634,973	9,805,328	9,995,419	10,139,559	10,332,652
Apr															
Мау															
Jun															
Jul															
Aug															
Sep															
Oct															
Nov Dec															
Dec	Year-to-Year Change in Electric Customers														
Month	2009–10	2010-11	2011–12	2012-13	2013–14	2014–15	2015–16	2016–17	2017–18	2018–19	2019–20	2020-21	2021-22	2022-23	2023–24
Jan															
Feb															
Mar	29,286	51,979	58,140	68,224	103,806	133,822	128,291	126,760	122,163	132,583	158,951	170,355	190,091	144,140	193,093
Apr															
May															
Jun															
Jul															
Aug															
Sep															
Oct															
Nov															
Dec															
Month								-	Customers (in %						
	2009–10	2010-11	2011–12	2012-13	2013–14	2014–15	2015–16	2016–17	2017–18	2018–19	2019–20	2020-21	2021–22	2022–23	2023–24
Jan Fab															
Feb	0.34	0.61	0.68	0.79	1.19	1.52	1.43	1.39	1.32	1.42	1.68	1.77	1.94	1.44	1.90
Mar Apr	0.34	0.01	0.00	0.79	1.19	1.52	1.43	1.39	1.32	1.42	1.00	1.//	1.94	1.44	1.90
Арг Мау															
Jun															
Jul															
Aug															
Sep															
Oct															
Nov															
Dec															

Electric Customers

Notes:

All Companies (March):

The March total has been adjusted downward by 0.373% each year prior to 2020 to make the series comparable to the new Duke data used for the estimates. The totals for 2020 and 2021 are based on the new Duke data and are about 36,000–37,000 lower than the EC reports for those years.

Florida Power & Light:

Data for FP&L raised by 1% prior to July 2013, reduced gradually through December 2013. Includes City of Vero Beach adjustment, which transferred to FP&L in December 2018 to January 2019.

Duke:

Includes Hardee County adjustment (transfer from Duke to Peace River Electric Coop) through July 2019. Duke changed their billing system in November 2021. Data for earlier months were inflated due to inclusion of some non-housing units. We lowered the data prior to November 2021 by 13,680 each month to make the series comparable with the new and improved billing system. Also included are updated monthly customer counts since November 2021.

Tampa Electric:

Adjusted data for TECO for January 2017 through April 2018.

This page was intentionally left blank

Florida Driver's Licenses Issued (Proxy for Domestic and International In-Migration)

